These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 19384856)
41. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. Hildebrand JD J Cell Sci; 2005 Nov; 118(Pt 22):5191-203. PubMed ID: 16249236 [TBL] [Abstract][Full Text] [Related]
42. Expression pattern of a basic helix-loop-helix transcription factor Xhairy2b during Xenopus laevis development. Tsuji S; Cho KW; Hashimoto C Dev Genes Evol; 2003 Aug; 213(8):407-11. PubMed ID: 12774230 [TBL] [Abstract][Full Text] [Related]
43. Xenopus, an ideal model system to study vertebrate left-right asymmetry. Blum M; Beyer T; Weber T; Vick P; Andre P; Bitzer E; Schweickert A Dev Dyn; 2009 Jun; 238(6):1215-25. PubMed ID: 19208433 [TBL] [Abstract][Full Text] [Related]
44. Differential expression of espin isoforms during epithelial morphogenesis, stereociliogenesis and postnatal maturation in the developing inner ear. Sekerková G; Zheng L; Mugnaini E; Bartles JR Dev Biol; 2006 Mar; 291(1):83-95. PubMed ID: 16413524 [TBL] [Abstract][Full Text] [Related]
45. Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine. Ishizuya-Oka A; Kajita M; Hasebe T PLoS One; 2014; 9(9):e107611. PubMed ID: 25211363 [TBL] [Abstract][Full Text] [Related]
46. A novel gene, BENI is required for the convergent extension during Xenopus laevis gastrulation. Homma M; Inui M; Fukui A; Michiue T; Okabayashi K; Asashima M Dev Biol; 2007 Mar; 303(1):270-80. PubMed ID: 17174295 [TBL] [Abstract][Full Text] [Related]
47. Identification of embryonic pancreatic genes using Xenopus DNA microarrays. Hayata T; Blitz IL; Iwata N; Cho KW Dev Dyn; 2009 Jun; 238(6):1455-66. PubMed ID: 19191222 [TBL] [Abstract][Full Text] [Related]
48. XGRIP2.1 is encoded by a vegetally localizing, maternal mRNA and functions in germ cell development and anteroposterior PGC positioning in Xenopus laevis. Tarbashevich K; Koebernick K; Pieler T Dev Biol; 2007 Nov; 311(2):554-65. PubMed ID: 17936745 [TBL] [Abstract][Full Text] [Related]
49. Differential expression of the Brunol/CELF family genes during Xenopus laevis early development. Wu J; Li C; Zhao S; Mao B Int J Dev Biol; 2010; 54(1):209-14. PubMed ID: 19757395 [TBL] [Abstract][Full Text] [Related]
50. Differential expression of non-muscle myosin heavy chain genes during Xenopus embryogenesis. Bhatia-Dey N; Taira M; Conti MA; Nooruddin H; Adelstein RS Mech Dev; 1998 Nov; 78(1-2):33-6. PubMed ID: 9858676 [TBL] [Abstract][Full Text] [Related]
51. Expression profile of rrbp1 genes during embryonic development and in adult tissues of Xenopus laevis. Liu GH; Mao CZ; Wu HY; Zhou DC; Xia JB; Kim SK; Cai DQ; Zhao H; Qi XF Gene Expr Patterns; 2017 Jan; 23-24():1-6. PubMed ID: 28034797 [TBL] [Abstract][Full Text] [Related]
52. Two Hoxc6 transcripts are differentially expressed and regulate primary neurogenesis in Xenopus laevis. Bardine N; Donow C; Korte B; Durston AJ; Knöchel W; Wacker SA Dev Dyn; 2009 Mar; 238(3):755-65. PubMed ID: 19235717 [TBL] [Abstract][Full Text] [Related]
53. pdzrn3 is required for pronephros morphogenesis in Xenopus laevis. Marracci S; Vangelisti A; Raffa V; Andreazzoli M; Dente L Int J Dev Biol; 2016; 60(1-3):57-63. PubMed ID: 26934292 [TBL] [Abstract][Full Text] [Related]
54. CRIM1 complexes with ß-catenin and cadherins, stabilizes cell-cell junctions and is critical for neural morphogenesis. Ponferrada VG; Fan J; Vallance JE; Hu S; Mamedova A; Rankin SA; Kofron M; Zorn AM; Hegde RS; Lang RA PLoS One; 2012; 7(3):e32635. PubMed ID: 22427856 [TBL] [Abstract][Full Text] [Related]
55. Characterization of the 38 kDa protein lacking in gastrula-arrested mutant Xenopus embryos. Tanaka TS; Nishiumi F; Komiya T; Ikenishi K Int J Dev Biol; 2010; 54(8-9):1347-53. PubMed ID: 20712004 [TBL] [Abstract][Full Text] [Related]
56. A transient asymmetric distribution of XNOA 36 mRNA and the associated spectrin network bisects Xenopus laevis stage I oocytes along the future A/V axis. Vaccaro MC; Gigliotti S; Graziani F; Carotenuto R; De Angelis C; Tussellino M; Campanella C Eur J Cell Biol; 2010 Jul; 89(7):525-36. PubMed ID: 20226562 [TBL] [Abstract][Full Text] [Related]
57. Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate. Andreazzoli M; Gestri G; Cremisi F; Casarosa S; Dawid IB; Barsacchi G Development; 2003 Nov; 130(21):5143-54. PubMed ID: 12975341 [TBL] [Abstract][Full Text] [Related]
58. ADAMTS9, a member of the ADAMTS family, in Xenopus development. Desanlis I; Felstead HL; Edwards DR; Wheeler GN Gene Expr Patterns; 2018 Sep; 29():72-81. PubMed ID: 29935379 [TBL] [Abstract][Full Text] [Related]
59. The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. Iwasaki Y; Thomsen GH Development; 2014 Oct; 141(19):3740-51. PubMed ID: 25209246 [TBL] [Abstract][Full Text] [Related]
60. The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Spokony RF; Aoki Y; Saint-Germain N; Magner-Fink E; Saint-Jeannet JP Development; 2002 Jan; 129(2):421-32. PubMed ID: 11807034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]