These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 19384901)
1. Fragment formal concept analysis accurately classifies compounds with closely related biological activities. Krüger F; Lounkine E; Bajorath J ChemMedChem; 2009 Jul; 4(7):1174-81. PubMed ID: 19384901 [TBL] [Abstract][Full Text] [Related]
2. Formal concept analysis for the identification of molecular fragment combinations specific for active and highly potent compounds. Lounkine E; Auer J; Bajorath J J Med Chem; 2008 Sep; 51(17):5342-8. PubMed ID: 18698757 [TBL] [Abstract][Full Text] [Related]
3. Methods for computer-aided chemical biology. Part 5: rationalizing the selectivity of cathepsin inhibitors on the basis of molecular fragments and topological feature distributions. Ahmed HE; Bajorath J Chem Biol Drug Des; 2009 Aug; 74(2):129-41. PubMed ID: 19549075 [TBL] [Abstract][Full Text] [Related]
4. Methods for computer-aided chemical biology. Part 3: analysis of structure-selectivity relationships through single- or dual-step selectivity searching and Bayesian classification. Stumpfe D; Geppert H; Bajorath J Chem Biol Drug Des; 2008 Jun; 71(6):518-28. PubMed ID: 18482335 [TBL] [Abstract][Full Text] [Related]
5. Methods for computer-aided chemical biology. Part 2: Evaluation of compound selectivity using 2D molecular fingerprints. Vogt I; Stumpfe D; Ahmed HE; Bajorath J Chem Biol Drug Des; 2007 Sep; 70(3):195-205. PubMed ID: 17718714 [TBL] [Abstract][Full Text] [Related]
6. Mapping of activity-specific fragment pathways isolated from random fragment populations reveals the formation of coherent molecular cores. Lounkine E; Batista J; Bajorath J J Chem Inf Model; 2007; 47(6):2133-9. PubMed ID: 17939652 [TBL] [Abstract][Full Text] [Related]
7. RelACCS-FP: a structural minimalist approach to fingerprint design. Hu Y; Lounkine E; Batista J; Bajorath J Chem Biol Drug Des; 2008 Nov; 72(5):341-9. PubMed ID: 19012570 [TBL] [Abstract][Full Text] [Related]
8. Chemical database mining through entropy-based molecular similarity assessment of randomly generated structural fragment populations. Batista J; Bajorath J J Chem Inf Model; 2007; 47(1):59-68. PubMed ID: 17238249 [TBL] [Abstract][Full Text] [Related]
9. Data structures and computational tools for the extraction of SAR information from large compound sets. Wawer M; Lounkine E; Wassermann AM; Bajorath J Drug Discov Today; 2010 Aug; 15(15-16):630-9. PubMed ID: 20547243 [TBL] [Abstract][Full Text] [Related]
10. Core trees and consensus fragment sequences for molecular representation and similarity analysis. Lounkine E; Bajorath J J Chem Inf Model; 2008 Jun; 48(6):1161-6. PubMed ID: 18491888 [TBL] [Abstract][Full Text] [Related]
11. From structure-activity to structure-selectivity relationships: quantitative assessment, selectivity cliffs, and key compounds. Peltason L; Hu Y; Bajorath J ChemMedChem; 2009 Nov; 4(11):1864-73. PubMed ID: 19750525 [TBL] [Abstract][Full Text] [Related]
12. Methods for computer-aided chemical biology. Part 1: Design of a benchmark system for the evaluation of compound selectivity. Stumpfe D; Ahmed HE; Vogt I; Bajorath J Chem Biol Drug Des; 2007 Sep; 70(3):182-94. PubMed ID: 17718713 [TBL] [Abstract][Full Text] [Related]
13. Computational analysis of multi-target structure-activity relationships to derive preference orders for chemical modifications toward target selectivity. Wassermann AM; Peltason L; Bajorath J ChemMedChem; 2010 Jun; 5(6):847-58. PubMed ID: 20414918 [TBL] [Abstract][Full Text] [Related]
14. Emerging chemical patterns: a new methodology for molecular classification and compound selection. Auer J; Bajorath J J Chem Inf Model; 2006; 46(6):2502-14. PubMed ID: 17125191 [TBL] [Abstract][Full Text] [Related]
15. Fragment analysis in small molecule discovery. Merlot C; Domine D; Church DJ Curr Opin Drug Discov Devel; 2002 May; 5(3):391-9. PubMed ID: 12058614 [TBL] [Abstract][Full Text] [Related]
16. Target family-directed exploration of scaffolds with different SAR profiles. Hu Y; Bajorath J J Chem Inf Model; 2011 Dec; 51(12):3138-48. PubMed ID: 22091691 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the MAD algorithm for virtual screening. Eckert H; Bajorath J Methods Mol Biol; 2008; 453():349-62. PubMed ID: 18712313 [TBL] [Abstract][Full Text] [Related]
18. Mapping algorithms for molecular similarity analysis and ligand-based virtual screening: design of DynaMAD and comparison with MAD and DMC. Eckert H; Vogt I; Bajorath J J Chem Inf Model; 2006; 46(4):1623-34. PubMed ID: 16859294 [TBL] [Abstract][Full Text] [Related]
19. Finding multiactivity substructures by mining databases of drug-like compounds. Sheridan RP J Chem Inf Comput Sci; 2003; 43(3):1037-50. PubMed ID: 12767163 [TBL] [Abstract][Full Text] [Related]
20. Hierarchical strategy for identifying active chemotype classes in compound databases. Medina-Franco JL; Petit J; Maggiora GM Chem Biol Drug Des; 2006 Jun; 67(6):395-408. PubMed ID: 16882314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]