BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 19384992)

  • 1. Apolipoprotein AI tertiary structures determine stability and phospholipid-binding activity of discoidal high-density lipoprotein particles of different sizes.
    Chen B; Ren X; Neville T; Jerome WG; Hoyt DW; Sparks D; Ren G; Wang J
    Protein Sci; 2009 May; 18(5):921-35. PubMed ID: 19384992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of phosphatidylcholine by hepatic lipase in discoidal and spheroidal recombinant high-density lipoprotein.
    Tansey JT; Thuren TY; Jerome WG; Hantgan RR; Grant K; Waite M
    Biochemistry; 1997 Oct; 36(40):12227-34. PubMed ID: 9315860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol mobilization by free and lipid-bound apoAI(Milano) and apoAI(Milano)-apoAII heterodimers.
    Wang WQ; Moses AS; Francis GA
    Biochemistry; 2001 Mar; 40(12):3666-73. PubMed ID: 11297434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discoidal complexes containing apolipoprotein E and their transformation by lecithin-cholesterol acyltransferase.
    Gong EL; Nichols AV; Weisgraber KH; Forte TM; Shore VG; Blanche PJ
    Biochim Biophys Acta; 1989 Dec; 1006(3):317-28. PubMed ID: 2597674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of spherical, reconstituted high density lipoproteins containing both apolipoproteins A-I and A-II is mediated by lecithin:cholesterol acyltransferase.
    Clay MA; Pyle DH; Rye KA; Barter PJ
    J Biol Chem; 2000 Mar; 275(12):9019-25. PubMed ID: 10722751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies of discoidal lipoprotein A-I.
    Koppaka V
    Cell Mol Life Sci; 2001 Jun; 58(7):885-93. PubMed ID: 11497237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors controlling nascent high-density lipoprotein particle heterogeneity: ATP-binding cassette transporter A1 activity and cell lipid and apolipoprotein AI availability.
    Lyssenko NN; Nickel M; Tang C; Phillips MC
    FASEB J; 2013 Jul; 27(7):2880-92. PubMed ID: 23543682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesteryl ester diffusion, location and self-association constraints determine CETP activity with discoidal HDL: excimer probe study.
    Dergunov AD; Shabrova EV; Dobretsov GE
    Arch Biochem Biophys; 2014 Dec; 564():211-8. PubMed ID: 25449063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apolipoprotein A-I configuration and cell cholesterol efflux activity of discoidal lipoproteins depend on the reconstitution process.
    Cuellar LÁ; Prieto ED; Cabaleiro LV; Garda HA
    Biochim Biophys Acta; 2014 Jan; 1841(1):180-9. PubMed ID: 24201377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The number of amphipathic alpha-helical segments of apolipoproteins A-I, E, and A-IV determines the size and functional properties of their reconstituted lipoprotein particles.
    Jonas A; Steinmetz A; Churgay L
    J Biol Chem; 1993 Jan; 268(3):1596-602. PubMed ID: 8420935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apolipoprotein A-I structural modification and the functionality of reconstituted high density lipoprotein particles in cellular cholesterol efflux.
    Gillotte KL; Davidson WS; Lund-Katz S; Rothblat GH; Phillips MC
    J Biol Chem; 1996 Sep; 271(39):23792-8. PubMed ID: 8798607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT.
    Koukos G; Chroni A; Duka A; Kardassis D; Zannis VI
    Biochem J; 2007 Aug; 406(1):167-74. PubMed ID: 17506726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The charge and structural stability of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles.
    Sparks DL; Lund-Katz S; Phillips MC
    J Biol Chem; 1992 Dec; 267(36):25839-47. PubMed ID: 1464598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interplay between size, morphology, stability, and functionality of high-density lipoprotein subclasses.
    Cavigiolio G; Shao B; Geier EG; Ren G; Heinecke JW; Oda MN
    Biochemistry; 2008 Apr; 47(16):4770-9. PubMed ID: 18366184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of reconstituted high density lipoprotein structure and remodeling by apolipoprotein E.
    Rye KA; Bright R; Psaltis M; Barter PJ
    J Lipid Res; 2006 May; 47(5):1025-36. PubMed ID: 16452453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conformation of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles. 13C NMR studies of lysine ionization behavior.
    Sparks DL; Phillips MC; Lund-Katz S
    J Biol Chem; 1992 Dec; 267(36):25830-8. PubMed ID: 1464597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lecithin:cholesterol acyltransferase-induced transformation of HepG2 lipoproteins.
    McCall MR; Nichols AV; Blanche PJ; Shore VG; Forte TM
    J Lipid Res; 1989 Oct; 30(10):1579-89. PubMed ID: 2515238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservation of apolipoprotein A-I's central domain structural elements upon lipid association on different high-density lipoprotein subclasses.
    Oda MN; Budamagunta MS; Geier EG; Chandradas SH; Shao B; Heinecke JW; Voss JC; Cavigiolio G
    Biochemistry; 2013 Oct; 52(39):6766-78. PubMed ID: 23984834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of discoidal high density lipoproteins: a combined computational-experimental approach.
    Gu F; Jones MK; Chen J; Patterson JC; Catte A; Jerome WG; Li L; Segrest JP
    J Biol Chem; 2010 Feb; 285(7):4652-65. PubMed ID: 19948731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of sphingomyelin on the structure and function of reconstituted high density lipoproteins.
    Rye KA; Hime NJ; Barter PJ
    J Biol Chem; 1996 Feb; 271(8):4243-50. PubMed ID: 8626769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.