BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19386091)

  • 1. Recursive regularization for inferring gene networks from time-course gene expression profiles.
    Shimamura T; Imoto S; Yamaguchi R; Fujita A; Nagasaki M; Miyano S
    BMC Syst Biol; 2009 Apr; 3():41. PubMed ID: 19386091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of building gene regulatory networks with sparse autoregressive models.
    Rajapakse JC; Mundra PA
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S17. PubMed ID: 22373004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling gene expression regulatory networks with the sparse vector autoregressive model.
    Fujita A; Sato JR; Garay-Malpartida HM; Yamaguchi R; Miyano S; Sogayar MC; Ferreira CE
    BMC Syst Biol; 2007 Aug; 1():39. PubMed ID: 17761000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring dynamic gene networks under varying conditions for transcriptomic network comparison.
    Shimamura T; Imoto S; Yamaguchi R; Nagasaki M; Miyano S
    Bioinformatics; 2010 Apr; 26(8):1064-72. PubMed ID: 20197286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An empirical Bayes approach to inferring large-scale gene association networks.
    Schäfer J; Strimmer K
    Bioinformatics; 2005 Mar; 21(6):754-64. PubMed ID: 15479708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-protein interaction network construction for cancer using a new L1/2-penalized Net-SVM model.
    Chai H; Huang HH; Jiang HK; Liang Y; Xia LY
    Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data.
    Chan SC; Zhang L; Wu HC; Tsui KM
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):123-35. PubMed ID: 26357083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
    Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE
    Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification.
    Algamal ZY; Lee MH
    Comput Biol Med; 2015 Dec; 67():136-45. PubMed ID: 26520484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods.
    Qin J; Hu Y; Xu F; Yalamanchili HK; Wang J
    Methods; 2014 Jun; 67(3):294-303. PubMed ID: 24650566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process.
    Opgen-Rhein R; Strimmer K
    BMC Bioinformatics; 2007 May; 8 Suppl 2(Suppl 2):S3. PubMed ID: 17493252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous cotemporal probabilistic modeling of systems biology networks from sparse data.
    John DJ; Fetrow JS; Norris JL
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1208-22. PubMed ID: 20855920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel gene network inference algorithm using predictive minimum description length approach.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Deng Y; Zhang C
    BMC Syst Biol; 2010 May; 4 Suppl 1(Suppl 1):S7. PubMed ID: 20522257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments.
    Liu T; Lin N; Shi N; Zhang B
    BMC Bioinformatics; 2009 May; 10():146. PubMed ID: 19445669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational and experimental approaches for modeling gene regulatory networks.
    Goutsias J; Lee NH
    Curr Pharm Des; 2007; 13(14):1415-36. PubMed ID: 17504165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring cluster-based networks from differently stimulated multiple time-course gene expression data.
    Shiraishi Y; Kimura S; Okada M
    Bioinformatics; 2010 Apr; 26(8):1073-81. PubMed ID: 20223837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.
    Noor A; Serpedin E; Nounou M; Nounou HN
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1203-11. PubMed ID: 22350207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for inferring and extracting reliable genetic interactions from time-series profile of gene expression.
    Nakatsui M; Ueda T; Maki Y; Ono I; Okamoto M
    Math Biosci; 2008 Sep; 215(1):105-14. PubMed ID: 18638491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.