These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19386099)

  • 1. Multichromosomal median and halving problems under different genomic distances.
    Tannier E; Zheng C; Sankoff D
    BMC Bioinformatics; 2009 Apr; 10():120. PubMed ID: 19386099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions.
    Xu AW
    J Comput Biol; 2010 Sep; 17(9):1195-211. PubMed ID: 20874404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCJ: a breakpoint-like distance that simplifies several rearrangement problems.
    Feijão P; Meidanis J
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1318-29. PubMed ID: 21339538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the distribution of cycles and paths in multichromosomal breakpoint graphs and the expected value of rearrangement distance.
    Feijão P; Martinez F; Thévenin A
    BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S1. PubMed ID: 26695008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restricted DCJ model: rearrangement problems with chromosome reincorporation.
    Kováč J; Warren R; Braga MD; Stoye J
    J Comput Biol; 2011 Sep; 18(9):1231-41. PubMed ID: 21899428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold filling under the breakpoint and related distances.
    Jiang H; Zheng C; Sankoff D; Zhu B
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1220-9. PubMed ID: 22529329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithms for sorting unsigned linear genomes by the DCJ operations.
    Jiang H; Zhu B; Zhu D
    Bioinformatics; 2011 Feb; 27(3):311-6. PubMed ID: 21134895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the complexity of rearrangement problems under the breakpoint distance.
    Kováč J
    J Comput Biol; 2014 Jan; 21(1):1-15. PubMed ID: 24200391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An exact solver for the DCJ median problem.
    Zhang M; Arndt W; Tang J
    Pac Symp Biocomput; 2009; ():138-49. PubMed ID: 19209699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale evolution: reconstructing gene orders in the ancestral species.
    Bourque G; Pevzner PA
    Genome Res; 2002 Jan; 12(1):26-36. PubMed ID: 11779828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linearization of ancestral multichromosomal genomes.
    Maňuch J; Patterson M; Wittler R; Chauve C; Tannier E
    BMC Bioinformatics; 2012; 13 Suppl 19(Suppl 19):S11. PubMed ID: 23281593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algebraic double cut and join : A group-theoretic approach to the operator on multichromosomal genomes.
    Bhatia S; Egri-Nagy A; Francis AR
    J Math Biol; 2015 Nov; 71(5):1149-78. PubMed ID: 25502846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation of perfect DCJ rearrangement scenarios with linear and circular chromosomes.
    Bérard S; Chateau A; Chauve C; Paul C; Tannier E
    J Comput Biol; 2009 Oct; 16(10):1287-309. PubMed ID: 19803733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Complexity of Sorting by Reversals and Transpositions Problems.
    Oliveira AR; Brito KL; Dias U; Dias Z
    J Comput Biol; 2019 Nov; 26(11):1223-1229. PubMed ID: 31120331
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparative genomics meets topology: a novel view on genome median and halving problems.
    Alexeev N; Avdeyev P; Alekseyev MA
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):418. PubMed ID: 28185564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colored de Bruijn graphs and the genome halving problem.
    Alekseyev MA; Pevzner PA
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):98-107. PubMed ID: 17277417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome rearrangements with duplications.
    Bader M
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S27. PubMed ID: 20122199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorting Linear Genomes with Rearrangements and Indels.
    Braga MD; Stoye J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):500-6. PubMed ID: 26357261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the algebraic formalism for genome rearrangements to include linear chromosomes.
    Feijão P; Meidanis J
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):819-31. PubMed ID: 24334378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new genomic evolutionary model for rearrangements, duplications, and losses that applies across eukaryotes and prokaryotes.
    Lin Y; Moret BM
    J Comput Biol; 2011 Sep; 18(9):1055-64. PubMed ID: 21899415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.