These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1938631)

  • 1. Malleus vibration mode changes with frequency.
    Decraemer WF; Khanna SM; Funnell WR
    Hear Res; 1991 Aug; 54(2):305-18. PubMed ID: 1938631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the malleus vibration as a rigid body motion with one rotational and one translational degree of freedom.
    Decraemer WF; Khanna SM
    Hear Res; 1994 Jan; 72(1-2):1-18. PubMed ID: 8150727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for determining three-dimensional vibration in the ear.
    Decraemer WF; Khanna SM; Funnell WR
    Hear Res; 1994 Jun; 77(1-2):19-37. PubMed ID: 7928731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodyne interferometer measurements of the frequency response of the manubrium tip in cat.
    Decraemer WF; Khanna SM; Funnell WR
    Hear Res; 1990 Aug; 47(3):205-17. PubMed ID: 2228804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat.
    Decraemer WF; Khanna SM; Funnell WR
    Hear Res; 1989 Mar; 38(1-2):1-17. PubMed ID: 2708151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malleus vibration modelled as rigid body motion.
    Decraemer W; Khanna S
    Acta Otorhinolaryngol Belg; 1995; 49(2):139-45. PubMed ID: 7610906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional vibration of the malleus and incus in the living gerbil.
    Decraemer WF; de La Rochefoucauld O; Funnell WR; Olson ES
    J Assoc Res Otolaryngol; 2014 Aug; 15(4):483-510. PubMed ID: 24691793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ossicular vibration in human temporal bones].
    Aritomo H
    Nihon Jibiinkoka Gakkai Kaiho; 1989 Sep; 92(9):1359-70. PubMed ID: 2585204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum.
    Funnell WR; Khanna SM; Decraemer WF
    J Acoust Soc Am; 1992 Apr; 91(4 Pt 1):2082-90. PubMed ID: 1597600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to measure sound transmission via the malleus-incus complex.
    Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH
    Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of vibrations of gerbil tympanic membrane with closed middle ear cavity.
    Maftoon N; Funnell WR; Daniel SJ; Decraemer WF
    J Assoc Res Otolaryngol; 2013 Aug; 14(4):467-81. PubMed ID: 23624883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small tympanic membrane perforations in the inferior quadrants do not impact the manubrium vibration in guinea pigs.
    Zhang X; Dai Y; Zhang S; She W; Du X; Shui X
    PLoS One; 2012; 7(1):e28961. PubMed ID: 22238584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical coherence tomographic measurements of the sound-induced motion of the ossicular chain in chinchillas: Additional modes of ossicular motion enhance the mechanical response of the chinchilla middle ear at higher frequencies.
    Rosowski JJ; Ramier A; Cheng JT; Yun SH
    Hear Res; 2020 Oct; 396():108056. PubMed ID: 32836020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.
    Maftoon N; Funnell WR; Daniel SJ; Decraemer WF
    J Assoc Res Otolaryngol; 2015 Oct; 16(5):547-67. PubMed ID: 26197870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the incudo-malleolar joint to middle-ear sound transmission.
    Gerig R; Ihrle S; Röösli C; Dalbert A; Dobrev I; Pfiffner F; Eiber A; Huber AM; Sim JH
    Hear Res; 2015 Sep; 327():218-26. PubMed ID: 26209186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ossicular differentiation of airborne and seismic stimuli in the Cape golden mole (Chrysochloris asiatica).
    Willi UB; Bronner GN; Narins PM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Mar; 192(3):267-77. PubMed ID: 16283329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors contributing to bone conduction: the middle ear.
    Stenfelt S; Hato N; Goode RL
    J Acoust Soc Am; 2002 Feb; 111(2):947-59. PubMed ID: 11863197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser--Doppler velocity meter applied to tympanic membrane vibrations in cat.
    Buunen TJ; Vlaming MS
    J Acoust Soc Am; 1981 Mar; 69(3):744-50. PubMed ID: 7240554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of the cat eardrum to static pressures: mobile versus immobile malleus.
    Ladak HM; Decraemer WF; Dirckx JJ; Funnell WR
    J Acoust Soc Am; 2004 Nov; 116(5):3008-21. PubMed ID: 15603146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.