These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19386414)

  • 1. A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure.
    Gharagheizi F
    J Hazard Mater; 2009 Sep; 169(1-3):217-20. PubMed ID: 19386414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of upper flammability limit percent of pure compounds from their molecular structures.
    Gharagheizi F
    J Hazard Mater; 2009 Aug; 167(1-3):507-10. PubMed ID: 19201088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine.
    Pan Y; Jiang J; Wang R; Cao H; Cui Y
    J Hazard Mater; 2009 Sep; 168(2-3):962-9. PubMed ID: 19329246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new group contribution-based model for estimation of lower flammability limit of pure compounds.
    Gharagheizi F
    J Hazard Mater; 2009 Oct; 170(2-3):595-604. PubMed ID: 19520496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of molecular diffusivity of pure chemicals in water: a quantitative structure-property relationship study.
    Gharagheizi F; Sattari M
    SAR QSAR Environ Res; 2009; 20(3-4):267-85. PubMed ID: 19544192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure-property relationship study for estimation of quantitative calibration factors of some organic compounds in gas chromatography.
    Luan F; Liu HT; Wen Y; Zhang X
    Anal Chim Acta; 2008 Apr; 612(2):126-35. PubMed ID: 18358857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine.
    Pan Y; Jiang J; Wang R; Cao H; Cui Y
    J Hazard Mater; 2009 May; 164(2-3):1242-9. PubMed ID: 18952371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach.
    Modarresi H; Modarress H; Dearden JC
    Chemosphere; 2007 Feb; 66(11):2067-76. PubMed ID: 17113627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular structure based model for predicting surface tension of organic compounds.
    Delgado EJ; Diaz GA
    SAR QSAR Environ Res; 2006 Oct; 17(5):483-96. PubMed ID: 17050188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSPR correlation of melting point for drug compounds based on different sources of molecular descriptors.
    Modarresi H; Dearden JC; Modarress H
    J Chem Inf Model; 2006; 46(2):930-6. PubMed ID: 16563024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the lower flammability limit of organic compounds as a function of temperature.
    Rowley JR; Rowley RL; Wilding WV
    J Hazard Mater; 2011 Feb; 186(1):551-7. PubMed ID: 21144650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media.
    Ghasemi JB; Abdolmaleki A; Mandoumi N
    J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures.
    Oberg T
    SAR QSAR Environ Res; 2007; 18(1-2):127-39. PubMed ID: 17365964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of molecular diffusivity of pure components into air: a QSPR approach.
    Sattari M; Gharagheizi F
    Chemosphere; 2008 Jul; 72(9):1298-302. PubMed ID: 18541286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple QSPR model for the prediction of the adsorbability of organic compounds onto activated carbon cloth.
    Xu J; Zhu L; Fang D; Liu L; Bai Z; Wang L; Xu W
    SAR QSAR Environ Res; 2013 Jan; 24(1):47-59. PubMed ID: 23066906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSPR study on the bioconcentration factors of nonionic organic compounds in fish by characteristic root index and semiempirical molecular descriptors.
    Saçan MT; Erdem SS; Ozpinar GA; Balcioglu IA
    J Chem Inf Comput Sci; 2004; 44(3):985-92. PubMed ID: 15154766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum chemical calculations to reveal the relationship between the chemical structure and the fluorescence characteristics of phenylquinolinylethynes and phenylisoquinolinylethynes derivatives, and to predict their relative fluorescence intensity.
    Riahi S; Beheshti A; Ganjali MR; Norouzi P
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Dec; 74(5):1077-83. PubMed ID: 19854100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New QSPR study for the prediction of aqueous solubility of drug-like compounds.
    Duchowicz PR; Talevi A; Bruno-Blanch LE; Castro EA
    Bioorg Med Chem; 2008 Sep; 16(17):7944-55. PubMed ID: 18701302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust modelling of solubility in supercritical carbon dioxide using Bayesian methods.
    Tarasova A; Burden F; Gasteiger J; Winkler DA
    J Mol Graph Model; 2010 Apr; 28(7):593-7. PubMed ID: 20060347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly diverse, massive organic data as explored by a composite QSPR strategy: an advanced study of boiling point.
    Ivanova AA; Ivanov AA; Oliferenko AA; Palyulin VA; Zefirov NS
    SAR QSAR Environ Res; 2005 Jun; 16(3):231-46. PubMed ID: 15804811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.