These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19386665)

  • 21. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold.
    Yang L; Wang Q; Peng L; Yue H; Zhang Z
    Mol Med Rep; 2015 Aug; 12(2):2343-7. PubMed ID: 25902181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts.
    Nan K; Sun S; Li Y; Chen H; Wu T; Lu F
    J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.
    Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG
    Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically.
    Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH
    Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of ectopic bone formation process induced by four calcium phosphate ceramics in mice.
    Tang Z; Tan Y; Ni Y; Wang J; Zhu X; Fan Y; Chen X; Yang X; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1000-1010. PubMed ID: 27772699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption.
    Mastrogiacomo M; Papadimitropoulos A; Cedola A; Peyrin F; Giannoni P; Pearce SG; Alini M; Giannini C; Guagliardi A; Cancedda R
    Biomaterials; 2007 Mar; 28(7):1376-84. PubMed ID: 17134749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells.
    Trojani C; Boukhechba F; Scimeca JC; Vandenbos F; Michiels JF; Daculsi G; Boileau P; Weiss P; Carle GF; Rochet N
    Biomaterials; 2006 Jun; 27(17):3256-64. PubMed ID: 16510180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adipogenesis on biphasic calcium phosphate using rat adipose-derived mesenchymal stem cells: in vitro and in vivo.
    Venugopal B; Fernandez FB; Babu SS; Harikrishnan VS; Varma H; John A
    J Biomed Mater Res A; 2012 Jun; 100(6):1427-37. PubMed ID: 22374846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maxillary sinus floor elevation using a tissue-engineered bone with calcium-magnesium phosphate cement and bone marrow stromal cells in rabbits.
    Zeng D; Xia L; Zhang W; Huang H; Wei B; Huang Q; Wei J; Liu C; Jiang X
    Tissue Eng Part A; 2012 Apr; 18(7-8):870-81. PubMed ID: 22066969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs.
    Ji W; Kerckhofs G; Geeroms C; Marechal M; Geris L; Luyten FP
    Acta Biomater; 2018 Oct; 80():97-107. PubMed ID: 30267882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micro-CT-based bone ceramic scaffolding and its performance after seeding with mesenchymal stem cells for repair of load-bearing bone defect in canine femoral head.
    Peng J; Wen C; Wang A; Wang Y; Xu W; Zhao B; Zhang L; Lu S; Qin L; Guo Q; Dong L; Tian J
    J Biomed Mater Res B Appl Biomater; 2011 Feb; 96(2):316-25. PubMed ID: 21210512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesenchymal stem cells and endothelial progenitor cells stimulate bone regeneration and mineral density.
    Zigdon-Giladi H; Bick T; Lewinson D; Machtei EE
    J Periodontol; 2014 Jul; 85(7):984-90. PubMed ID: 24147844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA.
    Miron RJ; Sculean A; Shuang Y; Bosshardt DD; Gruber R; Buser D; Chandad F; Zhang Y
    Clin Oral Implants Res; 2016 Jun; 27(6):668-75. PubMed ID: 26227281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro and in vivo evaluation of a biphasic calcium phosphate scaffold coated with a native allogeneic extracellular matrix.
    Zhou S; Zhao W; Liu X; Liu G; Xi C; Wang X; Yan J
    J Tissue Eng Regen Med; 2014 Aug; 8(8):620-8. PubMed ID: 22730247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model.
    Roldán JC; Detsch R; Schaefer S; Chang E; Kelantan M; Waiss W; Reichert TE; Gurtner GC; Deisinger U
    J Craniomaxillofac Surg; 2010 Sep; 38(6):423-30. PubMed ID: 20189819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.
    Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI
    Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering.
    Liu YK; Lu QZ; Pei R; Ji HJ; Zhou GS; Zhao XL; Tang RK; Zhang M
    Biomed Mater; 2009 Apr; 4(2):025004. PubMed ID: 19208939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells.
    Huri PY; Ozilgen BA; Hutton DL; Grayson WL
    Biomed Mater; 2014 Aug; 9(4):045003. PubMed ID: 24945873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early BMP, Wnt and Ca(2+)/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates.
    Bolander J; Chai YC; Geris L; Schrooten J; Lambrechts D; Roberts SJ; Luyten FP
    Biomaterials; 2016 Apr; 86():106-18. PubMed ID: 26901484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.