These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19386756)

  • 1. Whole cell recordings from visualized neurons in the inner laminae of the functionally intact spinal cord.
    Dyck J; Gosgnach S
    J Neurophysiol; 2009 Jul; 102(1):590-7. PubMed ID: 19386756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous electrotonic coupling and synchronization of rhythmic bursting activity in mouse Hb9 interneurons.
    Wilson JM; Cowan AI; Brownstone RM
    J Neurophysiol; 2007 Oct; 98(4):2370-81. PubMed ID: 17715199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord.
    Hinckley CA; Hartley R; Wu L; Todd A; Ziskind-Conhaim L
    J Neurophysiol; 2005 Mar; 93(3):1439-49. PubMed ID: 15496486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane potential oscillations in reticulospinal and spinobulbar neurons during locomotor activity.
    Einum JF; Buchanan JT
    J Neurophysiol; 2005 Jul; 94(1):273-81. PubMed ID: 15744013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion.
    Wilson JM; Blagovechtchenski E; Brownstone RM
    J Neurosci; 2010 Jan; 30(3):1137-48. PubMed ID: 20089922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-cell patch-clamp recordings on spinal cord slices.
    Deng P; Xu ZC
    Methods Mol Biol; 2012; 851():65-72. PubMed ID: 22351082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord.
    Kwan AC; Dietz SB; Webb WW; Harris-Warrick RM
    J Neurosci; 2009 Sep; 29(37):11601-13. PubMed ID: 19759307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats.
    Tazerart S; Viemari JC; Darbon P; Vinay L; Brocard F
    J Neurophysiol; 2007 Aug; 98(2):613-28. PubMed ID: 17567773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory synaptic modulation of renshaw cell activity in the lumbar spinal cord of neonatal mice.
    Nishimaru H; Koganezawa T; Kakizaki M; Ebihara T; Yanagawa Y
    J Neurophysiol; 2010 Jun; 103(6):3437-47. PubMed ID: 20410357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of early locomotor network dysfunction following a focal lesion in an in vitro model of spinal injury.
    Taccola G; Mladinic M; Nistri A
    Eur J Neurosci; 2010 Jan; 31(1):60-78. PubMed ID: 20092556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the organization and modulation of spinal locomotor central pattern generators.
    Gordon IT; Whelan PJ
    J Exp Biol; 2006 Jun; 209(Pt 11):2007-14. PubMed ID: 16709903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vivo mouse spinal cord preparation for patch-clamp analysis of nociceptive processing.
    Graham BA; Brichta AM; Callister RJ
    J Neurosci Methods; 2004 Jul; 136(2):221-8. PubMed ID: 15183274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interneurone bursts are spontaneously associated with muscle contractions only during early phases of mouse spinal network development: a study in organotypic cultures.
    Rosato-Siri MD; Zoccolan D; Furlan F; Ballerini L
    Eur J Neurosci; 2004 Nov; 20(10):2697-710. PubMed ID: 15548213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the Dynamic Recruitment of Spinal Neurons during Fictive Locomotion.
    Rancic V; Ballanyi K; Gosgnach S
    J Neurosci; 2020 Dec; 40(50):9692-9700. PubMed ID: 33188068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of dI6 interneurons in the neonatal mouse spinal cord.
    Dyck J; Lanuza GM; Gosgnach S
    J Neurophysiol; 2012 Jun; 107(12):3256-66. PubMed ID: 22442567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperpolarization-activated and cyclic nucleotide-gated cation channel subunit 2 ion channels modulate synaptic transmission from nociceptive primary afferents containing substance P to secondary sensory neurons in laminae I-IIo of the rodent spinal dorsal horn.
    Papp I; Szucs P; Holló K; Erdélyi F; Szabó G; Antal M
    Eur J Neurosci; 2006 Sep; 24(5):1341-52. PubMed ID: 16987220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The patterns of spontaneous Ca2+ signals generated by ventral spinal neurons in vitro show time-dependent refinement.
    Sibilla S; Fabbro A; Grandolfo M; D'Andrea P; Nistri A; Ballerini L
    Eur J Neurosci; 2009 Apr; 29(8):1543-59. PubMed ID: 19419420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.