These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 193872)

  • 1. Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidases.
    Briggs RT; Karnovsky ML; Karnovsky MJ
    J Clin Invest; 1977 Jun; 59(6):1088-98. PubMed ID: 193872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH oxidase deficiency in X-linked chronic granulomatous disease.
    Hohn DC; Lehrer RI
    J Clin Invest; 1975 Apr; 55(4):707-13. PubMed ID: 235560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased phagocytic activity of polymorphonuclear leukocytes of chronic granulomatous disease as determined with flow cytometric assay.
    Hasui M; Hirabayashi Y; Hattori K; Kobayashi Y
    J Lab Clin Med; 1991 Apr; 117(4):291-8. PubMed ID: 1849170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method.
    Briggs RT; Drath DB; Karnovsky ML; Karnovsky MJ
    J Cell Biol; 1975 Dec; 67(3):566-86. PubMed ID: 407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurement of the bactericidal capability of neutrophils from patients and carriers of chronic granulomatous disease.
    Repine JE; Clawson CC
    J Lab Clin Med; 1977 Sep; 90(3):522-8. PubMed ID: 408453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction of metabolic deficiencies in the leukocytes of patients with chronic granulomatous disease.
    Baehner RL; Nathan DG; Karnovsky ML
    J Clin Invest; 1970 May; 49(5):865-70. PubMed ID: 5441540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of antibody-dependent cellular cytotoxicity: the use of effector cells from chronic granulomatous disease patients as investigative probes.
    Katz P; Simone CB; Henkart PA; Fauci AS
    J Clin Invest; 1980 Jan; 65(1):55-63. PubMed ID: 6243141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel post-translational incorporation of tyrosine into multiple proteins in activated human neutrophils. Correlation with phagocytosis and activation of the NADPH oxidase-mediated respiratory burst.
    Nath J; Ohno Y; Gallin JI; Wright DG
    J Immunol; 1992 Nov; 149(10):3360-71. PubMed ID: 1331234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of lysosomal enzymes by the respiratory burst of polymorphonuclear leukocytes. Possible involvement of myeloperoxidase-H2O2-halide system.
    Kobayashi M; Tanaka T; Usui T
    J Lab Clin Med; 1982 Dec; 100(6):896-907. PubMed ID: 6292313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay.
    Iverson D; DeChatelet LR; Spitznagel JK; Wang P
    J Clin Invest; 1977 Feb; 59(2):282-90. PubMed ID: 833275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased production of nitric oxide by phagocytic stimulated neutrophils in patients with chronic granulomatous disease.
    Tsuji S; Iharada A; Taniuchi S; Hasui M; Kaneko K
    J Pediatr Hematol Oncol; 2012 Oct; 34(7):500-2. PubMed ID: 22935662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD40/CD40L expression in leukocytes from chronic granulomatous disease patients.
    Salmen S; Corte D; Goncalves L; Barboza L; Montes H; Calderón A; Berrueta L
    APMIS; 2007 Aug; 115(8):939-47. PubMed ID: 17696950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEGylated D-amino acid oxidase restores bactericidal activity of neutrophils in chronic granulomatous disease via hypochlorite.
    Nakamura H; Fang J; Mizukami T; Nunoi H; Maeda H
    Exp Biol Med (Maywood); 2012 Jun; 237(6):703-8. PubMed ID: 22715431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyridine nucleotide-dependent generation of hydrogen peroxide by a particulate fraction from human neutrophils.
    DeChatelet LR; Shirley PS
    J Immunol; 1981 Mar; 126(3):1165-9. PubMed ID: 6893995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutrophil membrane potential changes and homotypic aggregation kinetics are pH-dependent: studies of chronic granulomatous disease.
    Ahlin A; Gyllenhammar H; Ringertz B; Palmblad J
    J Lab Clin Med; 1995 Mar; 125(3):392-401. PubMed ID: 7897306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of superoxide anion by NAD(P)H oxidase: lack of the oxidase activity in swollen leukocytes of CGD (chronic granulomatous disease.
    Takanaka K; Usui T
    Hiroshima J Med Sci; 1978 Mar; 27(1):23-9. PubMed ID: 209003
    [No Abstract]   [Full Text] [Related]  

  • 17. NADPH oxidase is not required for spontaneous and Staphylococcus aureus-induced apoptosis of monocytes.
    v Bernuth H; Kulka C; Roesler J; Gahr M; Rösen-Wolff A
    Ann Hematol; 2004 Apr; 83(4):206-11. PubMed ID: 14730390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defects in the oxidative killing of microorganisms by phagocytic leukocytes.
    Roos D; Weening RS
    Ciba Found Symp; 1978 Jun 6-8; (65):225-62. PubMed ID: 225141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineation of the phagocyte NADPH oxidase through studies of chronic granulomatous diseases of childhood.
    Gallin JI
    Int J Tissue React; 1993; 15(3):99-103. PubMed ID: 8188451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phosphoprotein of Mr 47,000, defective in autosomal chronic granulomatous disease, copurifies with one of two soluble components required for NADPH:O2 oxidoreductase activity in human neutrophils.
    Bolscher BG; van Zwieten R; Kramer IM; Weening RS; Verhoeven AJ; Roos D
    J Clin Invest; 1989 Mar; 83(3):757-63. PubMed ID: 2537848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.