BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 193872)

  • 21. H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells.
    Root RK; Metcalf JA
    J Clin Invest; 1977 Dec; 60(6):1266-79. PubMed ID: 199619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic granulomatous disease. Molecular genetics.
    Dinauer MC; Orkin SH
    Hematol Oncol Clin North Am; 1988 Jun; 2(2):225-40. PubMed ID: 3292508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of an NADH oxidase inhibitor (hydrocortisone) on polymorphonuclear leukocyte bactericidal activity.
    Mandell GL; Rubin W; Hook EW
    J Clin Invest; 1970 Jul; 49(7):1381-8. PubMed ID: 4393490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dysregulation of innate immune receptors on neutrophils in chronic granulomatous disease.
    Hartl D; Lehmann N; Hoffmann F; Jansson A; Hector A; Notheis G; Roos D; Belohradsky BH; Wintergerst U
    J Allergy Clin Immunol; 2008 Feb; 121(2):375-382.e9. PubMed ID: 18155283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disorders of phagocyte function: biochemical aspects.
    Quie PG
    Prog Clin Biol Res; 1977; 13():157-69. PubMed ID: 45476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iodinating ability of various leukocytes and their bactericidal activity.
    Simmons SR; Karnovsky ML
    J Exp Med; 1973 Jul; 138(1):44-63. PubMed ID: 4146157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes.
    Johnston RB; Keele BB; Misra HP; Lehmeyer JE; Webb LS; Baehner RL; RaJagopalan KV
    J Clin Invest; 1975 Jun; 55(6):1357-72. PubMed ID: 166094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 6-formylpterin intracellularly generates hydrogen peroxide and restores the impaired bactericidal activity of human neutrophils.
    Yamashita K; Arai T; Fukuda K; Mori H; Ishii H; Nishioka M; Tajima K; Makino K; Sasada M
    Biochem Biophys Res Commun; 2001 Nov; 289(1):85-90. PubMed ID: 11708781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: effect on the production of reactive oxygen species during phagocytosis.
    Johansson A; Jesaitis AJ; Lundqvist H; Magnusson KE; Sjölin C; Karlsson A; Dahlgren C
    Cell Immunol; 1995 Mar; 161(1):61-71. PubMed ID: 7867086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular and molecular effects of recombinant interferon gamma in chronic granulomatous disease.
    Newburger PE; Ezekowitz RA
    Hematol Oncol Clin North Am; 1988 Jun; 2(2):267-76. PubMed ID: 2839459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of phorbol myristate acetate on the metabolism of neutrophils from carriers of sex-linked chronic granulomatous disease.
    Repine JE; White JG; Clawson CC; Holmes BH
    J Lab Clin Med; 1975 Jan; 85(1):82-6. PubMed ID: 1141733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Phagocytic activity and oxygen radicals production of neutrophils in patients with chronic renal failure].
    Takahashi K; Imada A
    Nihon Jinzo Gakkai Shi; 1991 Jun; 33(6):565-74. PubMed ID: 1920936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deficient flavoprotein component of the NADPH-dependent O2-.-generating oxidase in the neutrophils from three male patients with chronic granulomatous disease.
    Gabig TG; Lefker BA
    J Clin Invest; 1984 Mar; 73(3):701-5. PubMed ID: 6707199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coregulation of NADPH oxidase activation and phosphorylation of a 48-kD protein(s) by a cytosolic factor defective in autosomal recessive chronic granulomatous disease.
    Caldwell SE; McCall CE; Hendricks CL; Leone PA; Bass DA; McPhail LC
    J Clin Invest; 1988 May; 81(5):1485-96. PubMed ID: 3366903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies of phagocytosis in chronic granulomatous disease.
    Gaither TA; Medley SR; Gallin JI; Frank MM
    Inflammation; 1987 Jun; 11(2):211-27. PubMed ID: 3034783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mechanism of bacterial killing by normal and chronic granulomatous disease leukocytes.
    Johnston RB
    Birth Defects Orig Artic Ser; 1975; 11(1):71-2. PubMed ID: 167886
    [No Abstract]   [Full Text] [Related]  

  • 37. Allosteric transformation of reduced nicotinamide adenine dinucleotide (phosphate) oxidase induced by phagocytosis in human polymorphonuclear leukocytes.
    DeChatelet LR; Shirley PS; McPhail LC; Iverson DB; Doellgast GJ
    Infect Immun; 1978 May; 20(2):398-405. PubMed ID: 27457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An isotopic assay for NADPH oxidase activity and some characteristics of the enzyme from human polymorphonuclear leukocytes.
    DeChatelet LR; McPhail LC; Mullikin D; McCall CE
    J Clin Invest; 1975 Apr; 55(4):714-21. PubMed ID: 235561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on the molecular mechanisms of human Fc receptor-mediated phagocytosis. Amplification of ingestion is dependent on the generation of reactive oxygen metabolites and is deficient in polymorphonuclear leukocytes from patients with chronic granulomatous disease.
    Gresham HD; McGarr JA; Shackelford PG; Brown EJ
    J Clin Invest; 1988 Oct; 82(4):1192-201. PubMed ID: 3049672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deficiency of NADPH oxidase activity in chronic granulomatous disease.
    McPhail LC; DeChatelet LR; Shirley PS; Wilfert C; Johnston RB; McCall CE
    J Pediatr; 1977 Feb; 90(2):213-7. PubMed ID: 12254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.