These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 19387451)

  • 1. Surface water: Pentagonal ice in chains.
    Feibelman PJ
    Nat Mater; 2009 May; 8(5):372-3. PubMed ID: 19387451
    [No Abstract]   [Full Text] [Related]  

  • 2. A model for binding of an antifreeze polypeptide to ice.
    Wen D; Laursen RA
    Biophys J; 1992 Dec; 63(6):1659-62. PubMed ID: 1489916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-density liquid water is the mother of ice: on the relation between mesostructure, thermodynamics and ice crystallization in solutions.
    Bullock G; Molinero V
    Faraday Discuss; 2013; 167():371-88. PubMed ID: 24640501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biological function of an insect antifreeze protein simulated by molecular dynamics.
    Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A
    Elife; 2015 May; 4():. PubMed ID: 25951514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size- and dimensionality-dependent thermodynamic properties of ice nanocrystals.
    Han YY; Shuai J; Lu HM; Meng XK
    J Phys Chem B; 2012 Feb; 116(5):1651-4. PubMed ID: 22251366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromelting of confined monolayer ice.
    Qiu H; Guo W
    Phys Rev Lett; 2013 May; 110(19):195701. PubMed ID: 23705718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen bonding and compartmentalization of water in supercooled and frozen aqueous acetone solutions.
    Malsam J; Aksan A
    J Phys Chem B; 2010 Apr; 114(12):4238-45. PubMed ID: 20210291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving the optical spectrum of water: coordination and electrostatic effects.
    Hermann A; Schmidt WG; Schwerdtfeger P
    Phys Rev Lett; 2008 May; 100(20):207403. PubMed ID: 18518578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins.
    Wierzbicki A; Dalal P; Cheatham TE; Knickelbein JE; Haymet AD; Madura JD
    Biophys J; 2007 Sep; 93(5):1442-51. PubMed ID: 17526572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice-binding mechanism of winter flounder antifreeze proteins.
    Cheng A; Merz KM
    Biophys J; 1997 Dec; 73(6):2851-73. PubMed ID: 9414201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reassigning hydrogen-bond centering in dense ice.
    Benoit M; Romero AH; Marx D
    Phys Rev Lett; 2002 Sep; 89(14):145501. PubMed ID: 12366053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?
    Zhu W; Zhao WH; Wang L; Yin D; Jia M; Yang J; Zeng XC; Yuan LF
    Phys Chem Chem Phys; 2016 Jun; 18(21):14216-21. PubMed ID: 27063210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm.
    Yang DS; Hon WC; Bubanko S; Xue Y; Seetharaman J; Hew CL; Sicheri F
    Biophys J; 1998 May; 74(5):2142-51. PubMed ID: 9591641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts.
    Daley ME; Graether SP; Sykes BD
    Biochemistry; 2004 Oct; 43(41):13012-7. PubMed ID: 15476394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze.
    Liu XY; Du N
    J Biol Chem; 2004 Feb; 279(7):6124-31. PubMed ID: 14602714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature?
    Kar RK; Bhunia A
    J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced ice melting by the snow flea antifreeze protein from molecular dynamics simulations.
    Todde G; Whitman C; Hovmöller S; Laaksonen A
    J Phys Chem B; 2014 Nov; 118(47):13527-34. PubMed ID: 25353109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction.
    Sönnichsen FD; DeLuca CI; Davies PL; Sykes BD
    Structure; 1996 Nov; 4(11):1325-37. PubMed ID: 8939756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.