These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 19387451)

  • 21. Thermodynamics of ice nucleation in liquid water.
    Wang X; Wang S; Xu Q; Mi J
    J Phys Chem B; 2015 Jan; 119(4):1660-8. PubMed ID: 25546012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen bonds and van der waals forces in ice at ambient and high pressures.
    Santra B; Klimeš J; Alfè D; Tkatchenko A; Slater B; Michaelides A; Car R; Scheffler M
    Phys Rev Lett; 2011 Oct; 107(18):185701. PubMed ID: 22107644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein.
    Liou YC; Tocilj A; Davies PL; Jia Z
    Nature; 2000 Jul; 406(6793):322-4. PubMed ID: 10917536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2-1 0) faces of ice.
    Wierzbicki A; Taylor MS; Knight CA; Madura JD; Harrington JP; Sikes CS
    Biophys J; 1996 Jul; 71(1):8-18. PubMed ID: 8804585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local ice melting by an antifreeze protein.
    Calvaresi M; Höfinger S; Zerbetto F
    Biomacromolecules; 2012 Jul; 13(7):2046-52. PubMed ID: 22657839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamically unfavorable DNA hybridizations can be made to occur by a water to ice phase change.
    Krissanaprasit A; Guajardo C; Somasundrum M; Surareungchai W
    Cryobiology; 2013 Feb; 66(1):81-4. PubMed ID: 23103501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides.
    Chakrabartty A; Yang DS; Hew CL
    J Biol Chem; 1989 Jul; 264(19):11313-6. PubMed ID: 2738068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of the conformation of ice-nucleation protein by conformational energy calculation.
    Mizuno H
    Proteins; 1989; 5(1):47-65. PubMed ID: 2748572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antifreeze glycopeptides and peptides: interactions with ice and water.
    DeVries AL
    Methods Enzymol; 1986; 127():293-303. PubMed ID: 3736424
    [No Abstract]   [Full Text] [Related]  

  • 31. Freezing and melting water in lamellar structures.
    Gleeson JT; Erramilli S; Gruner SM
    Biophys J; 1994 Aug; 67(2):706-12. PubMed ID: 7948683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy-optimized structure of antifreeze protein and its binding mechanism.
    Chou KC
    J Mol Biol; 1992 Jan; 223(2):509-17. PubMed ID: 1738160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subzero water permeability parameters of mouse spermatozoa in the presence of extracellular ice and cryoprotective agents.
    Devireddy RV; Swanlund DJ; Roberts KP; Bischof JC
    Biol Reprod; 1999 Sep; 61(3):764-75. PubMed ID: 10456855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A diminished role for hydrogen bonds in antifreeze protein binding to ice.
    Chao H; Houston ME; Hodges RS; Kay CM; Sykes BD; Loewen MC; Davies PL; Sönnichsen FD
    Biochemistry; 1997 Dec; 36(48):14652-60. PubMed ID: 9398184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.
    Qiu Y; Odendahl N; Hudait A; Mason R; Bertram AK; Paesani F; DeMott PJ; Molinero V
    J Am Chem Soc; 2017 Mar; 139(8):3052-3064. PubMed ID: 28135412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal waters on the nine polyproline type II helical bundle springtail antifreeze protein from Granisotoma rainieri match the ice lattice.
    Scholl CL; Tsuda S; Graham LA; Davies PL
    FEBS J; 2021 Jul; 288(14):4332-4347. PubMed ID: 33460499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein.
    Chakraborty S; Jana B
    J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site disorder in ice VII arising from hydrogen bond fluctuations.
    Knight C; Singer SJ
    J Phys Chem A; 2009 Nov; 113(45):12433-8. PubMed ID: 19594132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ice-nucleating bacteria control the order and dynamics of interfacial water.
    Pandey R; Usui K; Livingstone RA; Fischer SA; Pfaendtner J; Backus EH; Nagata Y; Fröhlich-Nowoisky J; Schmüser L; Mauri S; Scheel JF; Knopf DA; Pöschl U; Bonn M; Weidner T
    Sci Adv; 2016 Apr; 2(4):e1501630. PubMed ID: 27152346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.