BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19387575)

  • 1. Quantitative analysis of nargenicin in Nocardia sp. CS682 culture by high performance liquid chromatography.
    Cho SS; Sohng JK; Lee HJ; Park SJ; Simkhada JR; Yoo JC
    Arch Pharm Res; 2009 Mar; 32(3):335-40. PubMed ID: 19387575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Nocardia sp. CS682 for enhanced production of nargenicin A₁.
    Maharjan S; Koju D; Lee HC; Yoo JC; Sohng JK
    Appl Biochem Biotechnol; 2012 Feb; 166(3):805-17. PubMed ID: 22161261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production, isolation and biological activity of nargenicin from Nocardia sp. CS682.
    Sohng JK; Yamaguchi T; Seong CN; Baik KS; Park SC; Lee HJ; Jang SY; Simkhada JR; Yoo JC
    Arch Pharm Res; 2008 Oct; 31(10):1339-45. PubMed ID: 18958426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of different biosynthetic precursors on the production of nargenicin A1 from metabolically engineered Nocardia sp. CS682.
    Koju D; Maharjan S; Dhakal D; Yoo JC; Sohng JK
    J Microbiol Biotechnol; 2012 Aug; 22(8):1127-32. PubMed ID: 22713990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of nargenicin A(1) and generation of novel glycosylated derivatives.
    Dhakal D; Le TT; Pandey RP; Jha AK; Gurung R; Parajuli P; Pokhrel AR; Yoo JC; Sohng JK
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2934-49. PubMed ID: 25577346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform.
    Dhakal D; Chaudhary AK; Yi JS; Pokhrel AR; Shrestha B; Parajuli P; Shrestha A; Yamaguchi T; Jung HJ; Kim SY; Kim BG; Sohng JK
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9917-9931. PubMed ID: 27412463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additional congeners of the macrolide neaumycin: structure revision and biological activity.
    Simone M; Maffioli SI; Tocchetti A; Tretter S; Cattaneo M; Biunno I; Gaspari E; Donadio S
    J Antibiot (Tokyo); 2015 Jun; 68(6):406-8. PubMed ID: 25586025
    [No Abstract]   [Full Text] [Related]  

  • 8. Biosynthesis and Ether-Bridge Formation in Nargenicin Macrolides.
    Pidot SJ; Herisse M; Sharkey L; Atkin L; Porter JL; Seemann T; Howden BP; Rizzacasa MA; Stinear TP
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):3996-4001. PubMed ID: 30677204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Tailoring Steps of Nargenicin A1 Biosynthesis Reveals a Novel Analogue with Anticancer Activities.
    Dhakal D; Han JM; Mishra R; Pandey RP; Kim TS; Rayamajhi V; Jung HJ; Yamaguchi T; Sohng JK
    ACS Chem Biol; 2020 Jun; 15(6):1370-1380. PubMed ID: 32208643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viridicatumtoxin B, a new anti-MRSA agent from Penicillium sp. FR11.
    Zheng CJ; Yu HE; Kim EH; Kim WG
    J Antibiot (Tokyo); 2008 Oct; 61(10):633-7. PubMed ID: 19168978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30T.
    Isnansetyo A; Kamei Y
    Int J Antimicrob Agents; 2009 Aug; 34(2):131-5. PubMed ID: 19329285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new 24-membered lactone and a new polyene delta-lactone from the marine bacterium Bacillus marinus.
    Xue C; Tian L; Xu M; Deng Z; Lin W
    J Antibiot (Tokyo); 2008 Nov; 61(11):668-74. PubMed ID: 19168981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterisation of a Streptomyces sp. isolate exhibiting activity against methicillin-resistant Staphylococcus aureus.
    Higginbotham SJ; Murphy CD
    Microbiol Res; 2010; 165(1):82-6. PubMed ID: 19231147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bispolides, novel 20-membered ring macrodiolide antibiotics from microbispora.
    Okujo N; Iinuma H; George A; Eim KS; Li TL; Ting NS; Jye TC; Hotta K; Hatsu M; Fukagawa Y; Shibahara S; Numata K; Kondo S
    J Antibiot (Tokyo); 2007 Mar; 60(3):216-9. PubMed ID: 17446696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tubelactomicin A, a novel 16-membered lactone antibiotic, from Nocardia sp. I. Taxonomy, production, isolation and biological properties.
    Igarashi M; Hayashi C; Homma Y; Hattori S; Kinoshita N; Hamada M; Takeuchi T
    J Antibiot (Tokyo); 2000 Oct; 53(10):1096-101. PubMed ID: 11132953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A β-resorcylic macrolide from the seagrass-derived fungus Fusarium sp. PSU-ES73.
    Arunpanichlert J; Rukachaisirikul V; Sukpondma Y; Phongpaichit S; Supaphon O; Sakayaroj J
    Arch Pharm Res; 2011 Oct; 34(10):1633-7. PubMed ID: 22076763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New structural scaffold 14-membered macrocyclic lactone ring for selective inhibitors of cell wall peptidoglycan biosynthesis in Staphylococcus aureus.
    Koyama N; Yotsumoto M; Onaka H; Tomoda H
    J Antibiot (Tokyo); 2013 May; 66(5):303-4. PubMed ID: 23340661
    [No Abstract]   [Full Text] [Related]  

  • 18. Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp.
    Mondol MA; Kim JH; Lee HS; Lee YJ; Shin HJ
    Bioorg Med Chem Lett; 2011 Jun; 21(12):3832-5. PubMed ID: 21570834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudotrienic acids A and B, two bioactive metabolites from Pseudomonas sp. MF381-IODS.
    Pohanka A; Broberg A; Johansson M; Kenne L; Levenfors J
    J Nat Prod; 2005 Sep; 68(9):1380-5. PubMed ID: 16180818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative uncertainty study of the calibration of macrolide antibiotic reference standards using quantitative nuclear magnetic resonance and mass balance methods.
    Liu SY; Hu CQ
    Anal Chim Acta; 2007 Oct; 602(1):114-21. PubMed ID: 17936115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.