These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 19387987)

  • 1. Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems.
    Cui Q; Gao F; Mukherjee S; Gu Z
    Small; 2009 Jun; 5(11):1246-57. PubMed ID: 19387987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ordered arrays of magnetic metal nanotubes and nanowires encapsulated with carbon tubes.
    Gao C; Tao F; Lin W; Xu Z; Xue Z
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4494-9. PubMed ID: 19049046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes.
    Hobbie EK; Fagan JA; Becker ML; Hudson SD; Fakhri N; Pasquali M
    ACS Nano; 2009 Jan; 3(1):189-96. PubMed ID: 19206266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-acoustic-wave-enhanced alignment of thiolated carbon nanotubes on gold electrodes.
    Smorodin T; Beierlein U; Ebbecke J; Wixforth A
    Small; 2005 Dec; 1(12):1188-90. PubMed ID: 17193416
    [No Abstract]   [Full Text] [Related]  

  • 5. Guiding electrical current in nanotube circuits using structural defects: a step forward in nanoelectronics.
    Romo-Herrera JM; Terrones M; Terrones H; Meunier V
    ACS Nano; 2008 Dec; 2(12):2585-91. PubMed ID: 19206295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecule-functionalized nanowires: from nanosensors to nanocarriers.
    Wang J
    Chemphyschem; 2009 Aug; 10(11):1748-55. PubMed ID: 19575484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance photoconductive channels based on (carbon nanotube)-(CdS nanowire) hybrid nanostructures.
    Lee H; Heo K; Maaroof A; Park Y; Noh S; Park J; Jian J; Lee C; Seong MJ; Hong S
    Small; 2012 Jun; 8(11):1650-6. PubMed ID: 22434722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional nanoprobes for ultrasensitive detection of biomolecules.
    Song S; Qin Y; He Y; Huang Q; Fan C; Chen HY
    Chem Soc Rev; 2010 Nov; 39(11):4234-43. PubMed ID: 20871878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.
    Long YZ; Yu M; Sun B; Gu CZ; Fan Z
    Chem Soc Rev; 2012 Jun; 41(12):4560-80. PubMed ID: 22573265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric field-assisted deposition of nanowires on carbon nanotubes for nanoelectronics and sensor applications.
    Sivakumar K; Panchapakesan B
    J Nanosci Nanotechnol; 2005 Feb; 5(2):313-8. PubMed ID: 15853154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous suspension of carbon nanotubes enhances the specificity of long PCR.
    Zhang Z; Shen C; Wang M; Han H; Cao X
    Biotechniques; 2008 Apr; 44(4):537-8, 540, 542, passim. PubMed ID: 18476818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigations into mechanical properties of hexagonal silicon carbon nanowires and nanotubes.
    Zheng B; Lowther JE
    Nanoscale; 2010 Sep; 2(9):1733-9. PubMed ID: 20820704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus?
    Shvedova AA; Kisin ER; Porter D; Schulte P; Kagan VE; Fadeel B; Castranova V
    Pharmacol Ther; 2009 Feb; 121(2):192-204. PubMed ID: 19103221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanowire and nanotube transistors for lab-on-a-chip applications.
    Lee M; Baik KY; Noah M; Kwon YK; Lee JO; Hong S
    Lab Chip; 2009 Aug; 9(16):2267-80. PubMed ID: 19636456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotubes--electronic/electrochemical properties and application for nanoelectronics and photonics.
    Sgobba V; Guldi DM
    Chem Soc Rev; 2009 Jan; 38(1):165-84. PubMed ID: 19088972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suspended carbon nanotube quantum wires with two gates.
    Cao J; Wang Q; Wang D; Dai H
    Small; 2005 Jan; 1(1):138-41. PubMed ID: 17193364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biomimetic nanosystems and novel composite nanobiomaterials].
    Khomutov GB
    Biofizika; 2011; 56(5):881-98. PubMed ID: 22117446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteins and peptides as biological nanowires: towards biosensing devices.
    Domigan LJ
    Methods Mol Biol; 2013; 996():131-52. PubMed ID: 23504422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties.
    Narayanan TN; Suchand Sandeep CS; Shaijumon MM; Ajayan PM; Philip R; Anantharaman MR
    Nanotechnology; 2009 Jul; 20(28):285702. PubMed ID: 19550014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.