These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 19388069)
1. The effect of sucrose hydrolysis on the stability of protein therapeutics during accelerated formulation studies. Banks DD; Hambly DM; Scavezze JL; Siska CC; Stackhouse NL; Gadgil HS J Pharm Sci; 2009 Dec; 98(12):4501-10. PubMed ID: 19388069 [TBL] [Abstract][Full Text] [Related]
2. Glycation during storage and administration of monoclonal antibody formulations. Fischer S; Hoernschemeyer J; Mahler HC Eur J Pharm Biopharm; 2008 Sep; 70(1):42-50. PubMed ID: 18583113 [TBL] [Abstract][Full Text] [Related]
3. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins III: collapse during storage at elevated temperatures. Schersch K; Betz O; Garidel P; Muehlau S; Bassarab S; Winter G Eur J Pharm Biopharm; 2013 Oct; 85(2):240-52. PubMed ID: 23727369 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? Chang L; Shepherd D; Sun J; Ouellette D; Grant KL; Tang XC; Pikal MJ J Pharm Sci; 2005 Jul; 94(7):1427-44. PubMed ID: 15920775 [TBL] [Abstract][Full Text] [Related]
5. Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: Implications for the mechanism of protein stabilization in the solid state. Chang LL; Shepherd D; Sun J; Tang XC; Pikal MJ J Pharm Sci; 2005 Jul; 94(7):1445-55. PubMed ID: 15920766 [TBL] [Abstract][Full Text] [Related]
6. The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations. Gadgil HS; Bondarenko PV; Pipes G; Rehder D; McAuley A; Perico N; Dillon T; Ricci M; Treuheit M J Pharm Sci; 2007 Oct; 96(10):2607-21. PubMed ID: 17621682 [TBL] [Abstract][Full Text] [Related]
7. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions. Brummitt RK; Nesta DP; Roberts CJ J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226 [TBL] [Abstract][Full Text] [Related]
8. Stability of lyophilized sucrose formulations of an IgG1: subvisible particle formation. Davis JM; Zhang N; Payne RW; Murphy BM; Abdul-Fattah AM; Matsuura JE; Herman AC; Manning MC Pharm Dev Technol; 2013; 18(4):883-96. PubMed ID: 22813478 [TBL] [Abstract][Full Text] [Related]
9. Liquid formulations for long-term storage of monoclonal IgGs. Mueller M; Loh MQ; Tee DH; Yang Y; Jungbauer A Appl Biochem Biotechnol; 2013 Feb; 169(4):1431-48. PubMed ID: 23315232 [TBL] [Abstract][Full Text] [Related]
10. Chemical stability of amorphous materials: specific and general media effects in the role of water in the degradation of freeze-dried zoniporide. Luthra SA; Shalaev EY; Medek A; Hong J; Pikal MJ J Pharm Sci; 2012 Sep; 101(9):3110-23. PubMed ID: 22461087 [TBL] [Abstract][Full Text] [Related]
11. Effects of pH, temperature, and sucrose on benzyl alcohol-induced aggregation of recombinant human granulocyte colony stimulating factor. Thirumangalathu R; Krishnan S; Brems DN; Randolph TW; Carpenter JF J Pharm Sci; 2006 Jul; 95(7):1480-97. PubMed ID: 16729274 [TBL] [Abstract][Full Text] [Related]
12. Addition of Amino Acids to Further Stabilize Lyophilized Sucrose-Based Protein Formulations: I. Screening of 15 Amino Acids in Two Model Proteins. Forney-Stevens KM; Bogner RH; Pikal MJ J Pharm Sci; 2016 Feb; 105(2):697-704. PubMed ID: 26414114 [TBL] [Abstract][Full Text] [Related]
13. Sorbitol crystallization can lead to protein aggregation in frozen protein formulations. Piedmonte DM; Summers C; McAuley A; Karamujic L; Ratnaswamy G Pharm Res; 2007 Jan; 24(1):136-46. PubMed ID: 17109212 [TBL] [Abstract][Full Text] [Related]
14. The effect of cosolutes on the isomerization of aspartic acid residues and conformational stability in a monoclonal antibody. Wakankar AA; Liu J; Vandervelde D; Wang YJ; Shire SJ; Borchardt RT J Pharm Sci; 2007 Jul; 96(7):1708-18. PubMed ID: 17238195 [TBL] [Abstract][Full Text] [Related]
16. Protein modification during antiviral heat bioprocessing. Smales CM; Pepper DS; James DC Biotechnol Bioeng; 2000 Jan; 67(2):177-88. PubMed ID: 10592515 [TBL] [Abstract][Full Text] [Related]
17. Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: comparison of their stability in an accelerated test. Herrera M; Tattini V; Pitombo RN; Gutiérrez JM; Borgognoni C; Vega-Baudrit J; Solera F; Cerdas M; Segura A; Villalta M; Vargas M; León G Toxicon; 2014 Nov; 90():56-63. PubMed ID: 25091348 [TBL] [Abstract][Full Text] [Related]
18. The effects of formulation and moisture on the stability of a freeze-dried monoclonal antibody-vinca conjugate: a test of the WLF glass transition theory. Roy ML; Pikal MJ; Rickard EC; Maloney AM Dev Biol Stand; 1992; 74():323-39; discussion 340. PubMed ID: 1592182 [TBL] [Abstract][Full Text] [Related]
19. Characterization and stability study of polysorbate 20 in therapeutic monoclonal antibody formulation by multidimensional ultrahigh-performance liquid chromatography-charged aerosol detection-mass spectrometry. Li Y; Hewitt D; Lentz YK; Ji JA; Zhang TY; Zhang K Anal Chem; 2014 May; 86(10):5150-7. PubMed ID: 24749737 [TBL] [Abstract][Full Text] [Related]