These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 193881)

  • 1. Kinetic studies of the oxidation of horse heart ferrocytochrome c, Pseudomonas aeruginosa ferrocytochrome c551, Co(terpy)22+, and Ru(NH3)5py2+ by Tris(1,10-phenanthroline)cobalt(III) ions.
    McArdle JV; Yocom K; Gray HB
    J Am Chem Soc; 1977 Jun; 99(12):4141-5. PubMed ID: 193881
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic studies of the oxidation of ferrocytochrome c from horse heart and Candida krusei by tris(1,10-phenanthroline)cobalt(3).
    McArdle JV; Gray HB; Creutz C; Sutin N
    J Am Chem Soc; 1974 Sep; 96(18):5737-41. PubMed ID: 4370137
    [No Abstract]   [Full Text] [Related]  

  • 3. Conformational stability of ferrocytochrome c. Electrostatic aspects of the oxidation by tris(1,10-phenanthroline)cobalt(III) at low ionic strength.
    Rush JD; Koppenol WH; Garber EA; Margoliash E
    J Biol Chem; 1988 Jun; 263(16):7514-20. PubMed ID: 2836388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome c: a thermodynamic study of the relationship among oxidation state, ion-binding and structural parameters. Cation binding to horse-heart ferrocytochrome c.
    Margalit R; Schejter A
    Eur J Biochem; 1974 Jul; 46(2):387-91. PubMed ID: 4368559
    [No Abstract]   [Full Text] [Related]  

  • 5. Directional electron transfer in ruthenium-modified horse heart cytochrome c.
    Bechtold R; Kuehn C; Lepre C; Isied SS
    Nature; 1986 Jul 17-23; 322(6076):286-8. PubMed ID: 3016549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxidation of ferrocytochrome c in nonbinding buffer.
    Peterman BF; Morton RA
    Can J Biochem; 1977 Aug; 55(8):796-803. PubMed ID: 196725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of Pseudomonas aeruginosa cytochrome c551 and cytochrome oxidase oxidation by Co(phen)3(3+) and Mn(CyDTA)(H2O)-.
    Tordi MG; Silvestrini MC; Adzamli K; Brunori M
    J Inorg Biochem; 1987 Jul; 30(3):155-66. PubMed ID: 2821190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-transfer protein reactivities. Kinetic studies of the oxidation of horse heart cytochrome c, Chromatium vinosum high potential iron-sulfur protein, Pseudomonas aeruginosa azurin, bean plastocyanin, and Rhus vernicifera stellacyanin by pentaamminepyridineruthenium(III).
    Cummins D; Gray HB
    J Am Chem Soc; 1977 Jul; 99(15):5158-67. PubMed ID: 194940
    [No Abstract]   [Full Text] [Related]  

  • 9. The spatial structure of the axially bound methionine in solution conformations of horse ferrocytochrome c and Pseudomonas aeruginosa ferrocytochrome c551 by 1H NMR.
    Senn H; Billeter M; Wüthrich K
    Eur Biophys J; 1984; 11(1):3-15. PubMed ID: 6088217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics studies of the oxidation of blue copper proteins by tris(1,10-phenanthroline)cobalt(III) ions.
    McArdle JV; Coyle CL; Cray HB; Yoneda GS; Holwerda RA
    J Am Chem Soc; 1977 Apr; 99(8):2483-9. PubMed ID: 850026
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinetic barriers to the folding of horse cytochrome C in the reduced state.
    Bhuyan AK; Kumar R
    Biochemistry; 2002 Oct; 41(42):12821-34. PubMed ID: 12379125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretation of effects of pH on rate constants for the oxidation of three ferrocytochromes c-551 with [Fe(CN)6]3- and [Co(phen)3]3+, and assignment of pKa values.
    de Silva DG; Sykes AG
    Biochim Biophys Acta; 1988 Feb; 952(3):334-41. PubMed ID: 2827782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic studies of the reduction of Pseudomonas aeruginosa ferricytochrome c551 by Fe(EDTA)2-.
    Coyle CL; Gray HB
    Biochem Biophys Res Commun; 1976 Dec; 73(4):1122-7. PubMed ID: 15625890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferred sites for electron transfer between cytochrome c and iron and cobalt complexes.
    Butler J; Chapman SK; Davies DM; Sykes AG; Speck SH; Osheroff N; Margoliash E
    J Biol Chem; 1983 May; 258(10):6400-4. PubMed ID: 6304037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa.
    Rosen P; Segal M; Pecht I
    Eur J Biochem; 1981 Nov; 120(2):339-44. PubMed ID: 6274637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of binding ions on the oxidation of horse heart ferrocytochrome c.
    Peterman BF; Morton RA
    Can J Biochem; 1979 May; 57(5):372-7. PubMed ID: 222407
    [No Abstract]   [Full Text] [Related]  

  • 17. Some spectral and steady-state kinetic properties of Pseudomonas cytochrome oxidase.
    Barber D; Parr SR; Greenwood C
    Biochem J; 1976 Aug; 157(2):431-8. PubMed ID: 183751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium unfolding of a small bacterial cytochrome, cytochrome c551 from Pseudomonas aeruginosa.
    Bigotti MG; Allocatelli CT; Staniforth RA; Arese M; Cutruzzolà F; Brunori M
    FEBS Lett; 1998 Apr; 425(3):385-90. PubMed ID: 9563499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain-swapped dimer of Pseudomonas aeruginosa cytochrome c551: structural insights into domain swapping of cytochrome c family proteins.
    Nagao S; Ueda M; Osuka H; Komori H; Kamikubo H; Kataoka M; Higuchi Y; Hirota S
    PLoS One; 2015; 10(4):e0123653. PubMed ID: 25853415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of several perturbants on the rate of autoxidation of horse heart ferrocytochrome c.
    Harrington JP; Carrier TL
    Int J Biochem; 1985; 17(1):119-22. PubMed ID: 2987054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.