BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19388144)

  • 41. The Thermoplasma acidophilum Lon protease has a Ser-Lys dyad active site.
    Besche H; Zwickl P
    Eur J Biochem; 2004 Nov; 271(22):4361-5. PubMed ID: 15560777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The host adherens junction molecule nectin-1 is degraded by chlamydial protease-like activity factor (CPAF) in Chlamydia trachomatis-infected genital epithelial cells.
    Sun J; Schoborg RV
    Microbes Infect; 2009 Jan; 11(1):12-9. PubMed ID: 18983929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chlamydia-secreted protease CPAF degrades host antimicrobial peptides.
    Tang L; Chen J; Zhou Z; Yu P; Yang Z; Zhong G
    Microbes Infect; 2015 Jun; 17(6):402-8. PubMed ID: 25752416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioinformatic approaches for predicting substrates of proteases.
    Song J; Tan H; Boyd SE; Shen H; Mahmood K; Webb GI; Akutsu T; Whisstock JC; Pike RN
    J Bioinform Comput Biol; 2011 Feb; 9(1):149-78. PubMed ID: 21328711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chlamydial protease-like activity factor induces protective immunity against genital chlamydial infection in transgenic mice that express the human HLA-DR4 allele.
    Murthy AK; Cong Y; Murphey C; Guentzel MN; Forsthuber TG; Zhong G; Arulanandam BP
    Infect Immun; 2006 Dec; 74(12):6722-9. PubMed ID: 17015458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of a putative lipoate protein ligase from Thermoplasma acidophilum and the mechanism of target selection for post-translational modification.
    McManus E; Luisi BF; Perham RN
    J Mol Biol; 2006 Feb; 356(3):625-37. PubMed ID: 16384580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Induction and inhibition of CPAF activity during analysis of Chlamydia-infected cells.
    Johnson KA; Lee JK; Chen AL; Tan M; Sütterlin C
    Pathog Dis; 2015 Feb; 73(1):1-8. PubMed ID: 25663342
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal structure of the tricorn protease reveals a protein disassembly line.
    Brandstetter H; Kim JS; Groll M; Huber R
    Nature; 2001 Nov; 414(6862):466-70. PubMed ID: 11719810
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural basis for the processive protein degradation by tricorn protease.
    Brandstetter H; Kim JS; Groll M; Göttig P; Huber R
    Biol Chem; 2002; 383(7-8):1157-65. PubMed ID: 12437101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular structure of a novel membrane protease specific for a stomatin homolog from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Yokoyama H; Matsui E; Akiba T; Harata K; Matsui I
    J Mol Biol; 2006 May; 358(4):1152-64. PubMed ID: 16574150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reconstitution of human azurocidin catalytic triad and proteolytic activity by site-directed mutagenesis.
    Olczak M; Indyk K; Olczak T
    Biol Chem; 2008 Jul; 389(7):955-62. PubMed ID: 18627314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteasome from Thermoplasma acidophilum: a threonine protease.
    Seemüller E; Lupas A; Stock D; Löwe J; Huber R; Baumeister W
    Science; 1995 Apr; 268(5210):579-82. PubMed ID: 7725107
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells.
    Kim ET; Oh SE; Lee YO; Gibson W; Ahn JH
    J Virol; 2009 Dec; 83(23):12046-56. PubMed ID: 19759126
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional dissection of the alphavirus capsid protease: sequence requirements for activity.
    Thomas S; Rai J; John L; Günther S; Drosten C; Pützer BM; Schaefer S
    Virol J; 2010 Nov; 7():327. PubMed ID: 21087473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neutralizing antichlamydial activity of complement by chlamydia-secreted protease CPAF.
    Yang Z; Tang L; Zhou Z; Zhong G
    Microbes Infect; 2016 Nov; 18(11):669-674. PubMed ID: 27436813
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of the chlamydial effector CPAF in the induction of genomic instability.
    Grieshaber SS; Grieshaber NA
    Pathog Dis; 2014 Oct; 72(1):5-6. PubMed ID: 25082267
    [No Abstract]   [Full Text] [Related]  

  • 58. Mutational analysis of conserved AAA+ residues in the archaeal Lon protease from Thermoplasma acidophilum.
    Besche H; Tamura N; Tamura T; Zwickl P
    FEBS Lett; 2004 Sep; 574(1-3):161-6. PubMed ID: 15358558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structures of cyanobactin maturation enzymes define a family of transamidating proteases.
    Agarwal V; Pierce E; McIntosh J; Schmidt EW; Nair SK
    Chem Biol; 2012 Nov; 19(11):1411-22. PubMed ID: 23177196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease.
    Bian Y; Liang X; Fang N; Tang XF; Tang B; Shen P; Peng Z
    FEBS Lett; 2006 Oct; 580(25):6007-14. PubMed ID: 17052711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.