These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19388630)

  • 1. UV-driven reversible switching of a polystyrene/titania nanocomposite coating between superhydrophobicity and superhydrophilicity.
    Hou W; Wang Q
    Langmuir; 2009 Jun; 25(12):6875-9. PubMed ID: 19388630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO2 composite nanofiber surfaces.
    Borras A; Barranco A; González-Elipe AR
    Langmuir; 2008 Aug; 24(15):8021-6. PubMed ID: 18576610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting behavior of a SiO(2)-polystyrene nanocomposite surface.
    Hou W; Wang Q
    J Colloid Interface Sci; 2007 Dec; 316(1):206-9. PubMed ID: 17714723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity.
    Gu C; Zhang J; Tu J
    J Colloid Interface Sci; 2010 Dec; 352(2):573-9. PubMed ID: 20851408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of superhydrophobic electrospun nanocomposite fibers for energy systems.
    Asmatulu R; Ceylan M; Nuraje N
    Langmuir; 2011 Jan; 27(2):504-7. PubMed ID: 21171580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.
    Liu Y; Lin Z; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3959-64. PubMed ID: 22764733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces.
    Pan Y; Kong W; Bhushan B; Zhao X
    Beilstein J Nanotechnol; 2019; 10():866-873. PubMed ID: 31165013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin SiO(x) Film Coating Effect on the Wettability Change of TiO(2) Surfaces in the Presence and Absence of UV Light Illumination.
    Hattori A; Kawahara T; Uemoto T; Suzuki F; Tada H; Ito S
    J Colloid Interface Sci; 2000 Dec; 232(2):410-413. PubMed ID: 11097778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic composite films produced on various substrates.
    Manoudis PN; Karapanagiotis I; Tsakalof A; Zuburtikudis I; Panayiotou C
    Langmuir; 2008 Oct; 24(19):11225-32. PubMed ID: 18720965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hierarchically ordered TiO2 hemispherical particle array with hexagonal-non-close-packed tops: synthesis and stable superhydrophilicity without UV irradiation.
    Li Y; Sasaki T; Shimizu Y; Koshizaki N
    Small; 2008 Dec; 4(12):2286-91. PubMed ID: 19016492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically modified superhydrophobic WO(x) nanowire arrays and UV photopatterning.
    Kwak G; Lee M; Yong K
    Langmuir; 2010 Jun; 26(12):9964-7. PubMed ID: 20369846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal/plasma-driven reversible wettability switching of a bare gold film on a poly(dimethylsiloxane) surface by electroless plating.
    Wu J; Bai HJ; Zhang XB; Xu JJ; Chen HY
    Langmuir; 2010 Jan; 26(2):1191-8. PubMed ID: 19722553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity.
    Liu H; Feng L; Zhai J; Jiang L; Zhu D
    Langmuir; 2004 Jul; 20(14):5659-61. PubMed ID: 16459574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophilic and superwetting surfaces: definition and mechanisms of control.
    Drelich J; Chibowski E
    Langmuir; 2010 Dec; 26(24):18621-3. PubMed ID: 21090661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient wettability control via three-dimensional (3D) suspension of titania nanoparticles in polystyrene nanofibers.
    Lee MW; An S; Joshi B; Latthe SS; Yoon SS
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1232-9. PubMed ID: 23347600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV and thermally stable superhydrophobic coatings from sol-gel processing.
    Xiu Y; Hess DW; Wong CP
    J Colloid Interface Sci; 2008 Oct; 326(2):465-70. PubMed ID: 18656893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous materials show superhydrophobic to superhydrophilic switching.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC; Roach P
    Chem Commun (Camb); 2005 Jul; (25):3135-7. PubMed ID: 15968349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New responsive property of poly(epsilon-caprolactone) as the thermal switch from superhydrophobic to superhydrophilic.
    Hu S; Cao X; Song Y; Li C; Xie P; Jiang L
    Chem Commun (Camb); 2008 May; (17):2025-7. PubMed ID: 18536809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.