These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19388632)

  • 1. What is inside a nonionic reverse micelle? Probing the interior of Igepal reverse micelles using decavanadate.
    Sedgwick MA; Crans DC; Levinger NE
    Langmuir; 2009 May; 25(10):5496-503. PubMed ID: 19388632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do probe molecules influence water in confinement?
    Baruah B; Swafford LA; Crans DC; Levinger NE
    J Phys Chem B; 2008 Aug; 112(33):10158-64. PubMed ID: 18651765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When is water not water? Exploring water confined in large reverse micelles using a highly charged inorganic molecular probe.
    Baruah B; Roden JM; Sedgwick M; Correa NM; Crans DC; Levinger NE
    J Am Chem Soc; 2006 Oct; 128(39):12758-65. PubMed ID: 17002370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple oxovanadates as multiparameter probes of reverse micelles.
    Baruah B; Crans DC; Levinger NE
    Langmuir; 2007 Jun; 23(12):6510-8. PubMed ID: 17489609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant charge effects on the location, vibrational spectra, and relaxation dynamics of cyanoferrates in reverse micelles.
    Sando GM; Dahl K; Owrutsky JC
    J Phys Chem B; 2005 Mar; 109(9):4084-95. PubMed ID: 16851467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of micellar and reverse micellar interface on solute location: 2,6-pyridinedicarboxylate in CTAB micelles and CTAB and AOT reverse micelles.
    Gaidamauskas E; Cleaver DP; Chatterjee PB; Crans DC
    Langmuir; 2010 Aug; 26(16):13153-61. PubMed ID: 20695553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of water at the interface in reverse micelles: measurements of spectral diffusion with two-dimensional infrared vibrational echoes.
    Fenn EE; Wong DB; Giammanco CH; Fayer MD
    J Phys Chem B; 2011 Oct; 115(40):11658-70. PubMed ID: 21899355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water solubilization capacity of mixed reverse micelles: effect of surfactant component, the nature of the oil, and electrolyte concentration.
    Paul BK; Mitra RK
    J Colloid Interface Sci; 2005 Aug; 288(1):261-79. PubMed ID: 15927587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conundrum of pH in water nanodroplets: sensing pH in reverse micelle water pools.
    Crans DC; Levinger NE
    Acc Chem Res; 2012 Oct; 45(10):1637-45. PubMed ID: 22812536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach for the characterization of reverse micellar systems by dynamic light scattering.
    Lemyre JL; Lamarre S; Beaupré A; Ritcey AM
    Langmuir; 2010 Jul; 26(13):10524-31. PubMed ID: 20356048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a reverse micellar system by 1H NMR.
    Lemyre JL; Ritcey AM
    Langmuir; 2010 May; 26(9):6250-5. PubMed ID: 20099857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of nonionic surfactant (glycerol alpha-monomyristate) micelles in organic solvents: a SAXS study.
    Shrestha LK; Glatter O; Aramaki K
    J Phys Chem B; 2009 May; 113(18):6290-8. PubMed ID: 19358555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of micelles of polyoxyethylene nonylphenol (Igepal) and its complexation with 3,7-diamino-2,8-dimethyl- 5-phenylphenazinium chloride.
    Ghosh SK; Khatua PK; Bhattacharya SCh
    J Colloid Interface Sci; 2004 Jul; 275(2):623-31. PubMed ID: 15178296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of compressed CO2 on the properties of lecithin reverse micelles.
    Zhao Y; Zhang J; Han B; Zhang C; Li W; Feng X; Hou M; Yang G
    Langmuir; 2008 Sep; 24(17):9328-33. PubMed ID: 18646884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-angle X-ray scattering and near-infrared vibrational spectroscopy of water confined in aerosol-OT reverse micelles.
    Balakrishnan S; Javid N; Weingärtner H; Winter R
    Chemphyschem; 2008 Dec; 9(18):2794-801. PubMed ID: 19016296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton transfer in ionic and neutral reverse micelles.
    Lawler C; Fayer MD
    J Phys Chem B; 2015 May; 119(19):6024-34. PubMed ID: 25913559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies of 2-(2-bromo-ethyl)-6-nitro-benzo[de]isoquinolene-1,3-dione in water/alkanol mixed solvents and nonionic micelle of Igepal CO series.
    Banerjee P; Chatterjee S; Pramanik S; Hossain SU; Bhattacharya S; Bhattacharya SC
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):1110-4. PubMed ID: 16857422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do ionic and hydrophobic probes sense similar microenvironment in Triton X-100 nonionic reverse micelles?
    Dutt GB
    J Chem Phys; 2008 Jul; 129(1):014501. PubMed ID: 18624477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent magnetic field effect study on exciplex luminescence: probing the triton X-100 reverse micelle in cyclohexane.
    Das D; Nath DN
    J Phys Chem B; 2007 Sep; 111(37):11009-15. PubMed ID: 17725343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.