BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 19388673)

  • 1. Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase.
    Kampmeier F; Ribbert M; Nachreiner T; Dembski S; Beaufils F; Brecht A; Barth S
    Bioconjug Chem; 2009 May; 20(5):1010-5. PubMed ID: 19388673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An engineered protein tag for multiprotein labeling in living cells.
    Gautier A; Juillerat A; Heinis C; Corrêa IR; Kindermann M; Beaufils F; Johnsson K
    Chem Biol; 2008 Feb; 15(2):128-36. PubMed ID: 18291317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
    Tirat A; Freuler F; Stettler T; Mayr LM; Leder L
    Int J Biol Macromol; 2006 Aug; 39(1-3):66-76. PubMed ID: 16503347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells.
    Juillerat A; Heinis C; Sielaff I; Barnikow J; Jaccard H; Kunz B; Terskikh A; Johnsson K
    Chembiochem; 2005 Jul; 6(7):1263-9. PubMed ID: 15934048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of SNAP-tag-mediated live cell labeling as an alternative to GFP in Porphyromonas gingivalis.
    Nicolle O; Rouillon A; Guyodo H; Tamanai-Shacoori Z; Chandad F; Meuric V; Bonnaure-Mallet M
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):357-63. PubMed ID: 20482622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general method for the covalent labeling of fusion proteins with small molecules in vivo.
    Keppler A; Gendreizig S; Gronemeyer T; Pick H; Vogel H; Johnsson K
    Nat Biotechnol; 2003 Jan; 21(1):86-9. PubMed ID: 12469133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures.
    Engin S; Trouillet V; Franz CM; Welle A; Bruns M; Wedlich D
    Langmuir; 2010 May; 26(9):6097-101. PubMed ID: 20369837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent labeling of COS-7 expressing SNAP-tag fusion proteins for live cell imaging.
    Provost CR; Sun L
    J Vis Exp; 2010 May; (39):. PubMed ID: 20485262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells.
    Keppler A; Ellenberg J
    ACS Chem Biol; 2009 Feb; 4(2):127-38. PubMed ID: 19191588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step site-specific antibody fragment auto-conjugation using SNAP-tag technology.
    Hussain AF; Heppenstall PA; Kampmeier F; Meinhold-Heerlein I; Barth S
    Nat Protoc; 2019 Nov; 14(11):3101-3125. PubMed ID: 31605098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of bifunctional probes for the specific labeling of fusion proteins.
    Kindermann M; Sielaff I; Johnsson K
    Bioorg Med Chem Lett; 2004 Jun; 14(11):2725-8. PubMed ID: 15125922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific protein labeling with SNAP-tags.
    Cole NB
    Curr Protoc Protein Sci; 2013 Sep; 73():30.1.1-30.1.16. PubMed ID: 24510614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and application of a N-1' fluorescent biotinyl derivative inducing the specific carboxy-terminal dual labeling of a novel RhoB-selective scFv.
    Chaisemartin L; Chinestra P; Favre G; Blonski C; Faye JC
    Bioconjug Chem; 2009 May; 20(5):847-55. PubMed ID: 19348471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality.
    Iversen L; Cherouati N; Berthing T; Stamou D; Martinez KL
    Langmuir; 2008 Jun; 24(12):6375-81. PubMed ID: 18484753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging.
    Sun X; Zhang A; Baker B; Sun L; Howard A; Buswell J; Maurel D; Masharina A; Johnsson K; Noren CJ; Xu MQ; Corrêa IR
    Chembiochem; 2011 Sep; 12(14):2217-26. PubMed ID: 21793150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion.
    Colombo M; Mazzucchelli S; Montenegro JM; Galbiati E; Corsi F; Parak WJ; Prosperi D
    Small; 2012 May; 8(10):1492-7. PubMed ID: 22431243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNAP-Tag Technology: A Useful Tool To Determine Affinity Constants and Other Functional Parameters of Novel Antibody Fragments.
    Niesen J; Sack M; Seidel M; Fendel R; Barth S; Fischer R; Stein C
    Bioconjug Chem; 2016 Aug; 27(8):1931-41. PubMed ID: 27391930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a thermophilic O
    Rossi F; Morrone C; Massarotti A; Ferraris DM; Valenti A; Perugino G; Miggiano R
    Biochem Biophys Res Commun; 2018 Jun; 500(3):698-703. PubMed ID: 29684348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of an anti-epidermal growth factor receptor antibody to single chain format and labeling by Sortase A-mediated protein ligation.
    Madej MP; Coia G; Williams CC; Caine JM; Pearce LA; Attwood R; Bartone NA; Dolezal O; Nisbet RM; Nuttall SD; Adams TE
    Biotechnol Bioeng; 2012 Jun; 109(6):1461-70. PubMed ID: 22170409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring in vivo protein half-life.
    Bojkowska K; Santoni de Sio F; Barde I; Offner S; Verp S; Heinis C; Johnsson K; Trono D
    Chem Biol; 2011 Jun; 18(6):805-15. PubMed ID: 21700215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.