BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19388682)

  • 1. Coupling of Raman radial breathing modes in double-wall carbon nanotubes and bundles of nanotubes.
    Han SP; Goddard WA
    J Phys Chem B; 2009 May; 113(20):7199-204. PubMed ID: 19388682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ Raman spectroelectrochemistry as a tool for the differentiation of inner tubes of double-wall carbon nanotubes and thin single-wall carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    Anal Chem; 2007 Dec; 79(23):9074-81. PubMed ID: 17973461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes.
    Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS
    Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroelectrochemistry of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen- and boron-doped double-walled carbon nanotubes.
    Panchakarla LS; Govindaraj A; Rao CN
    ACS Nano; 2007 Dec; 1(5):494-500. PubMed ID: 19206671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution.
    Kim JH; Kataoka M; Shimamoto D; Muramatsu H; Jung YC; Hayashi T; Kim YA; Endo M; Park JS; Saito R; Terrones M; Dresselhaus MS
    ACS Nano; 2010 Feb; 4(2):1060-6. PubMed ID: 20112962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy of free-standing individual semiconducting single-wall carbon nanotubes.
    Paillet M; Langlois S; Sauvajol JL; Marty L; Iaia A; Naud C; Bouchiat V; Bonnot AM
    J Phys Chem B; 2006 Jan; 110(1):164-9. PubMed ID: 16471515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Raman scattering of single-wall carbon nanotubes produced using Y/Ni catalyst].
    Wang YF; Liu HR; Xu XX; Shao Y; Cao XW; Hu SF; Liu YY; Lan GX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):580-3. PubMed ID: 12938370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-depth study into the interaction of single walled carbon nanotubes with anthracene and p-terphenyl.
    Hedderman TG; Keogh SM; Chambers G; Byrne HJ
    J Phys Chem B; 2006 Mar; 110(9):3895-901. PubMed ID: 16509673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-induced Raman frequency variation for single-walled carbon nanotubes.
    Zhang Y; Zhang J; Son H; Kong J; Liu Z
    J Am Chem Soc; 2005 Dec; 127(49):17156-7. PubMed ID: 16332042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of impurities on the x-ray photoelectron spectroscopy and Raman spectra of single-wall carbon nanotubes.
    Li Z; Biris AS; Dervishi E; Saini V; Xu Y; Biris AR; Lupu D
    J Chem Phys; 2007 Oct; 127(15):154713. PubMed ID: 17949197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical doping of chirality-resolved carbon nanotubes.
    Kavan L; Kalbac M; Zukalova M; Dunsch L
    J Phys Chem B; 2005 Oct; 109(42):19613-9. PubMed ID: 16853536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2006 May; 12(16):4451-7. PubMed ID: 16552794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coaxial nanocables of codoped double-walled carbon nanotubes.
    Yang Y; Yan XH; Lu D; Cao JX
    J Chem Phys; 2009 Dec; 131(21):214701. PubMed ID: 19968354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced photoluminescence from very thin double-wall carbon nanotubes synthesized by the zeolite-CCVD method.
    Kishi N; Kikuchi S; Ramesh P; Sugai T; Watanabe Y; Shinohara H
    J Phys Chem B; 2006 Dec; 110(49):24816-21. PubMed ID: 17149899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective optical property modification of double-walled carbon nanotubes by fluorination.
    Hayashi T; Shimamoto D; Kim YA; Muramatsu H; Okino F; Touhara H; Shimada T; Miyauchi Y; Maruyama S; Terrones M; Dresselhaus MS; Endo M
    ACS Nano; 2008 Mar; 2(3):485-8. PubMed ID: 19206574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced catalytic activity of sub-nanometer titania clusters confined inside double-wall carbon nanotubes.
    Zhang H; Pan X; Liu JJ; Qian W; Wei F; Huang Y; Bao X
    ChemSusChem; 2011 Jul; 4(7):975-80. PubMed ID: 21365773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High levels of electrochemical doping of carbon nanotubes: evidence for a transition from double-layer charging to intercalation and functionalization.
    Rafailov PM; Thomsen C; Dettlaff-Weglikowska U; Roth S
    J Phys Chem B; 2008 May; 112(17):5368-73. PubMed ID: 18393479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wall-selective probing of double-walled carbon nanotubes using covalent functionalization.
    Bouilly D; Cabana J; Meunier F; Desjardins-Carrière M; Lapointe F; Gagnon P; Larouche FL; Adam E; Paillet M; Martel R
    ACS Nano; 2011 Jun; 5(6):4927-34. PubMed ID: 21595426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with NaDDBS.
    Utsumi S; Kanamaru M; Honda H; Kanoh H; Tanaka H; Ohkubo T; Sakai H; Abe M; Kaneko K
    J Colloid Interface Sci; 2007 Apr; 308(1):276-84. PubMed ID: 17204278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.