These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19388702)

  • 1. Role of the anion-binding site in catalysis and regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase.
    Burton RL; Chen S; Xu XL; Grant GA
    Biochemistry; 2009 Jun; 48(22):4808-15. PubMed ID: 19388702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mechanism for substrate inhibition in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase.
    Burton RL; Chen S; Xu XL; Grant GA
    J Biol Chem; 2007 Oct; 282(43):31517-24. PubMed ID: 17761677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis of substrate and effector binding in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase.
    Dey S; Burton RL; Grant GA; Sacchettini JC
    Biochemistry; 2008 Aug; 47(32):8271-82. PubMed ID: 18627175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient kinetic analysis of the interaction of L-serine with Escherichia coli D-3-phosphoglycerate dehydrogenase reveals the mechanism of V-type regulation and the order of effector binding.
    Burton RL; Chen S; Xu XL; Grant GA
    Biochemistry; 2009 Dec; 48(51):12242-51. PubMed ID: 19924905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stopped flow transient kinetic analysis of substrate binding and catalysis in Escherichia coli D-3-phosphoglycerate dehydrogenase.
    Burton RL; Hanes JW; Grant GA
    J Biol Chem; 2008 Oct; 283(44):29706-14. PubMed ID: 18776184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Type 1 D-3-phosphoglycerate dehydrogenases reveals unique regulation in pathogenic Mycobacteria.
    Xu XL; Chen S; Salinas ND; Tolia NH; Grant GA
    Arch Biochem Biophys; 2015 Mar; 570():32-9. PubMed ID: 25698123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase by phosphate-modulated quaternary structure dynamics and a potential role for polyphosphate in enzyme regulation.
    Xu XL; Grant GA
    Biochemistry; 2014 Jul; 53(26):4239-49. PubMed ID: 24956108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cofactor binding to Escherichia coli D-3-phosphoglycerate dehydrogenase induces multiple conformations which alter effector binding.
    Grant GA; Hu Z; Xu XL
    J Biol Chem; 2002 Oct; 277(42):39548-53. PubMed ID: 12183470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient kinetic analysis of L-serine interaction with Escherichia coli D-3-phosphoglycerate dehydrogenase containing amino acid mutations in the hinge regions.
    Grant GA
    Biochemistry; 2011 Apr; 50(14):2900-6. PubMed ID: 21391703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase.
    Wang Q; Qi Y; Yin N; Lai L
    PLoS One; 2014; 9(4):e94829. PubMed ID: 24733054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-3-Phosphoglycerate dehydrogenase from Mycobacterium tuberculosis is a link between the Escherichia coli and mammalian enzymes.
    Dey S; Hu Z; Xu XL; Sacchettini JC; Grant GA
    J Biol Chem; 2005 Apr; 280(15):14884-91. PubMed ID: 15668250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of amino acid residues contributing to the mechanism of cooperativity in Escherichia coli D-3-phosphoglycerate dehydrogenase.
    Grant GA; Hu Z; Xu XL
    Biochemistry; 2005 Dec; 44(51):16844-52. PubMed ID: 16363798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiconformational states in phosphoglycerate dehydrogenase.
    Bell JK; Grant GA; Banaszak LJ
    Biochemistry; 2004 Mar; 43(12):3450-8. PubMed ID: 15035616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient kinetic studies on the allosteric transition of phosphoglycerate dehydrogenase.
    Dubrow R; Pizer LI
    J Biol Chem; 1977 Mar; 252(5):1527-38. PubMed ID: 320209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis.
    Parikh S; Moynihan DP; Xiao G; Tonge PJ
    Biochemistry; 1999 Oct; 38(41):13623-34. PubMed ID: 10521269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases.
    Grant GA
    Arch Biochem Biophys; 2012 Mar; 519(2):175-85. PubMed ID: 22023909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory Mechanism of Mycobacterium tuberculosis Phosphoserine Phosphatase SerB2.
    Grant GA
    Biochemistry; 2017 Dec; 56(49):6481-6490. PubMed ID: 29140686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of L-serine dehydratase from Legionella pneumophila: novel use of the C-terminal cysteine as an intrinsic competitive inhibitor.
    Thoden JB; Holden HM; Grant GA
    Biochemistry; 2014 Dec; 53(48):7615-24. PubMed ID: 25380533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of a cysteine residue in substrate entry and catalysis in MtHIBADH: Analysis by chemical modifications and site-directed mutagenesis.
    Singh A; Badepally NG; Surolia A
    IUBMB Life; 2021 Jun; 73(6):855-865. PubMed ID: 33724683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine.
    Singh RK; Raj I; Pujari R; Gourinath S
    FEBS J; 2014 Dec; 281(24):5498-512. PubMed ID: 25294608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.