These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19388759)

  • 1. Orientational order of near D(3h) solutes in nematic liquid crystals. II. Description via Gay-Berne model with embedded quadrupoles.
    Sokolovskii RO; Burnell EE
    J Chem Phys; 2009 Apr; 130(15):154507. PubMed ID: 19388759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientational order of near D(3h) solutes in nematic liquid crystals.
    Danilović Z; Burnell EE
    J Chem Phys; 2009 Apr; 130(15):154506. PubMed ID: 19388758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientational mechanisms in liquid crystalline systems. 2. The contribution to solute ordering from the reaction field interaction between the solute electric quadrupole moment and the solvent electric field gradient.
    Celebre G; Ionescu A
    J Phys Chem B; 2010 Jan; 114(1):235-41. PubMed ID: 20017544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular ordering and structure of quasi-spherical solutes by liquid crystal NMR and Monte Carlo simulations: the case of norbornadiene.
    Aroulanda C; Celebre G; De Luca G; Longeri M
    J Phys Chem B; 2006 Jun; 110(21):10485-96. PubMed ID: 16722758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance parameters of atomic xenon dissolved in Gay-Berne model liquid crystal.
    Lintuvuori J; Straka M; Vaara J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031707. PubMed ID: 17500711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An explicit relationship between the dielectric anisotropy and the average electric field gradient in nematic solvents.
    Celebre G
    J Phys Chem B; 2007 Mar; 111(10):2565-72. PubMed ID: 17302451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent smectic order parameters from solute nematic order parameters.
    Celebre G; Cinacchi G; De Luca G
    J Chem Phys; 2008 Sep; 129(9):094509. PubMed ID: 19044879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientational mechanisms in liquid crystalline systems. 1. A reaction field analytical description of the interaction between the electric quadrupole moment of a probe solute and the electric field gradient of a nematic solvent.
    Celebre G; Ionescu A
    J Phys Chem B; 2010 Jan; 114(1):228-34. PubMed ID: 20017545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier transport simulation in a model liquid crystalline system with the biaxial Gay-Berne potential.
    Goto M; Takezoe H; Ishikawa K
    J Chem Phys; 2010 Feb; 132(5):054506. PubMed ID: 20136321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR determination of smectic ordering of probe molecules.
    Yethiraj A; Weber AC; Dong RY; Burnell EE
    J Phys Chem B; 2007 Feb; 111(7):1632-9. PubMed ID: 17266360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic behavior of short-term dynamics in reorientation for Gay-Berne particles near the nematic-isotropic phase transition temperature.
    Satoh K
    J Chem Phys; 2006 Nov; 125(20):204902. PubMed ID: 17144735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing assumptions about solute concentration dependence in liquid crystal NMR.
    Taggar AS; Campbell CJ; Yethiraj A; Burnell EE
    J Phys Chem B; 2006 Jan; 110(3):1363-8. PubMed ID: 16471686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum-mechanical studies of NMR properties of solutes in liquid crystals: a new strategy to determine orientational order parameters.
    Pavanello M; Mennucci B; Ferrarini A
    J Chem Phys; 2005 Feb; 122(6):064906. PubMed ID: 15740407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of the nematic liquid crystal phase in the presence of an intense magnetic field.
    Satoh K
    J Chem Phys; 2006 Apr; 124(14):144901. PubMed ID: 16626239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial molar volume and solvation structure of naphthalene in supercritical carbon dioxide: a Monte Carlo simulation study.
    Stubbs JM; Drake-Wilhelm DD; Siepmann JI
    J Phys Chem B; 2005 Oct; 109(42):19885-92. PubMed ID: 16853571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constant-pressure simulations of Gay-Berne liquid-crystalline phases in cylindrical nanocavities.
    Karjalainen J; Lintuvuori J; Telkki VV; Lantto P; Vaara J
    Phys Chem Chem Phys; 2013 Sep; 15(33):14047-57. PubMed ID: 23857435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A scale-bridging modeling approach for anisotropic organic molecules at patterned semiconductor surfaces.
    Kleppmann N; Klapp SH
    J Chem Phys; 2015 Feb; 142(6):064701. PubMed ID: 25681929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculations of helical twisting powers from intermolecular torques.
    Earl DJ; Wilson MR
    J Chem Phys; 2004 May; 120(20):9679-83. PubMed ID: 15267981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of solute orientational order in nematic liquid crystals.
    Elliott Burnell E; Ter Beek LC; Sun Z
    J Chem Phys; 2008 Apr; 128(16):164901. PubMed ID: 18447494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple short time power laws in the orientational relaxation of nematic liquid crystals.
    Jose PP; Bagchi B
    J Chem Phys; 2006 Nov; 125(18):184901. PubMed ID: 17115789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.