BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19388793)

  • 1. Influence of nitrogen and phosphorus concentrations and ratios on Lemna gibba growth responses to triclosan in laboratory and stream mesocosm experiments.
    Fulton BA; Brain RA; Usenko S; Back JA; King RS; Brooks BW
    Environ Toxicol Chem; 2009 Dec; 28(12):2610-21. PubMed ID: 19388793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Lemna gibba thresholds to nutrient and chemical stressors: differential effects of triclosan on internal stoichiometry and nitrate uptake across a nitrogen:phosphorus gradient.
    Fulton BA; Brain RA; Usenko S; Back JA; Brooks BW
    Environ Toxicol Chem; 2010 Oct; 29(10):2363-70. PubMed ID: 20872701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient stoichiometry and concentrations influence silver toxicity in the aquatic macrophyte Lemna gibba.
    Bian J; Berninger JP; Fulton BA; Brooks BW
    Sci Total Environ; 2013 Apr; 449():229-36. PubMed ID: 23428753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consideration of exposure and species sensitivity of triclosan in the freshwater environment.
    Capdevielle M; Van Egmond R; Whelan M; Versteeg D; Hofmann-Kamensky M; Inauen J; Cunningham V; Woltering D
    Integr Environ Assess Manag; 2008 Jan; 4(1):15-23. PubMed ID: 18260205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aquatic toxicity of triclosan.
    Orvos DR; Versteeg DJ; Inauen J; Capdevielle M; Rothenstein A; Cunningham V
    Environ Toxicol Chem; 2002 Jul; 21(7):1338-49. PubMed ID: 12109732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limitations of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability.
    Mkandawire M; Taubert B; Dudel EG
    Ecotoxicol Environ Saf; 2006 Sep; 65(1):118-28. PubMed ID: 16029890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth Recovery of Lemna gibba and Lemna minor Following a 7-Day Exposure to the Herbicide Diuron.
    Burns M; Hanson ML; Prosser RS; Crossan AN; Kennedy IR
    Bull Environ Contam Toxicol; 2015 Aug; 95(2):150-6. PubMed ID: 26067703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms.
    Ricart M; Guasch H; Alberch M; Barceló D; Bonnineau C; Geiszinger A; Farré Ml; Ferrer J; Ricciardi F; Romaní AM; Morin S; Proia L; Sala L; Sureda D; Sabater S
    Aquat Toxicol; 2010 Nov; 100(4):346-53. PubMed ID: 20855117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors.
    Küster A; Pohl K; Altenburger R
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):377-83. PubMed ID: 17993220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.
    Mkandawire M; Dudel EG
    Sci Total Environ; 2005 Jan; 336(1-3):81-9. PubMed ID: 15589251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquatic microcosm assessment of the effects of tylosin on Lemna gibba and Myriophyllum spicatum.
    Brain RA; Bestari KJ; Sanderson H; Hanson ML; Wilson CJ; Johnson DJ; Sibley PK; Solomon KR
    Environ Pollut; 2005 Feb; 133(3):389-401. PubMed ID: 15519715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities.
    Lawrence JR; Zhu B; Swerhone GD; Roy J; Wassenaar LI; Topp E; Korber DR
    Sci Total Environ; 2009 May; 407(10):3307-16. PubMed ID: 19275956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of triclosan on various aquatic organisms.
    Tatarazako N; Ishibashi H; Teshima K; Kishi K; Arizono K
    Environ Sci; 2004; 11(2):133-40. PubMed ID: 15746894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protocol for conducting 7-day daily renewal tests with Lemna gibba.
    Brain RA; Solomon KR
    Nat Protoc; 2007; 2(4):979-87. PubMed ID: 17446897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. at different exposure levels and assessment end-points.
    Sobrero MC; Rimoldi F; Ronco AE
    Bull Environ Contam Toxicol; 2007 Nov; 79(5):537-43. PubMed ID: 17940715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a chronic lower range of triclosan exposure on a stream mesocosm community.
    Nietch CT; Quinlan EL; Lazorchak JM; Impellitteri CA; Raikow D; Walters D
    Environ Toxicol Chem; 2013 Dec; 32(12):2874-87. PubMed ID: 24038532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed).
    Sobrino AS; Miranda MG; Alvarez C; Quiroz A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(1):107-10. PubMed ID: 20390849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel bioassay using root re-growth in Lemna.
    Park A; Kim YJ; Choi EM; Brown MT; Han T
    Aquat Toxicol; 2013 Sep; 140-141():415-24. PubMed ID: 23917640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters.
    Mkandawire M; Taubert B; Dudel EG
    Int J Phytoremediation; 2004; 6(4):347-62. PubMed ID: 15696706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba.
    Barhoumi L; Oukarroum A; Taher LB; Smiri LS; Abdelmelek H; Dewez D
    Arch Environ Contam Toxicol; 2015 Apr; 68(3):510-20. PubMed ID: 25392153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.