These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 19389297)
21. Electrophysiological and behavioral responses of Dendroctonus frontalis (Coleoptera: Curculionidae) to volatiles isolated from conspecifics. Sullivan BT J Econ Entomol; 2005 Dec; 98(6):2067-78. PubMed ID: 16539134 [TBL] [Abstract][Full Text] [Related]
22. Evaluating Predators and Competitors in Wisconsin Red Pine Forests for Attraction to Mountain Pine Beetle Pheromones for Anticipatory Biological Control. Pfammatter JA; Krause A; Raffa KF Environ Entomol; 2015 Aug; 44(4):1161-71. PubMed ID: 26314062 [TBL] [Abstract][Full Text] [Related]
23. Impacts of silvicultural thinning treatments on beetle trap captures and tree attacks during low bark beetle populations in ponderosa pine forests of northern Arizona. Gaylord ML; Hofstetter RW; Wagner MR J Econ Entomol; 2010 Oct; 103(5):1693-703. PubMed ID: 21061969 [TBL] [Abstract][Full Text] [Related]
24. Potential for a minor pine bark beetle pest, Dendroctonus terebrans (Coleoptera: Curculionidae: Scolytinae), to mediate host location by a major pine killer, Dendroctonus frontalis. Sullivan BT; Munro HL; Barnes BF; McNichol BH; Shepherd WP; Gandhi KJK J Econ Entomol; 2024 Jun; 117(3):1010-1021. PubMed ID: 38555592 [TBL] [Abstract][Full Text] [Related]
25. Western pine beetle: specificity among enantiomers of male and female components of an attractant pheromone. Wood DL; Browne LE; Ewing B; Lindahl K; Bedard WD; Tilden PE; Mori K; Pitman GB; Hughes PR Science; 1976 May; 192(4242):896-8. PubMed ID: 1273574 [TBL] [Abstract][Full Text] [Related]
26. Electroantennogram responses by mountain pine beetles,Dendroctonus ponderosae Hopkins, exposed to selected semiochemicals. Whitehead AT J Chem Ecol; 1986 Jul; 12(7):1603-21. PubMed ID: 24305837 [TBL] [Abstract][Full Text] [Related]
27. Transformation of presumptive precursors to frontalin and exo-brevicomin by bark beetles and west Indian sugarcane weevil (Coleoptera). Perez AL; Gries R; Gries G; Oehlschlager AC Bioorg Med Chem; 1996 Mar; 4(3):445-50. PubMed ID: 8733625 [TBL] [Abstract][Full Text] [Related]
28. Evidence that (+)-endo-brevicomin is a male-produced component of the Southern pine beetle aggregation pheromone. Sullivan BT; Shepherd WP; Pureswaran DS; Tashiro T; Mori K J Chem Ecol; 2007 Aug; 33(8):1510-27. PubMed ID: 17629772 [TBL] [Abstract][Full Text] [Related]
29. Field Response of Black Turpentine Beetle to Pine Resin Oxidation and Pheromone Displacement. LeMay GA; O'Loughlin T; Wakarchuk D; Hulcr J J Chem Ecol; 2022 Aug; 48(7-8):641-649. PubMed ID: 35505046 [TBL] [Abstract][Full Text] [Related]
30. Alternative Formulations of Trap Lures for Operational Detection, Population Monitoring, and Outbreak Forecasting of Southern Pine Beetle in the United States. Sullivan BT; Shepherd WP; Nowak JT; Clarke SR; Merten PR; Billings RF; Upton WW; Riggins JJ; Brownie C J Econ Entomol; 2021 Jun; 114(3):1189-1200. PubMed ID: 33885781 [TBL] [Abstract][Full Text] [Related]
31. Discrimination of Odors Associated With Conspecific and Heterospecific Frass by Sibling Species Dendroctonus frontalis (Coleoptera: Curculionidae: Scolytinae) and Dendroctonus mesoamericanus (Coleoptera: Curculionidae: Scolytinae). Niño-Domínguez A; Sullivan BT; Lopez-Urbina JH; Macías-Sámano JE Environ Entomol; 2018 Dec; 47(6):1532-1540. PubMed ID: 30304377 [TBL] [Abstract][Full Text] [Related]
32. Immunocompetence of the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae): variation between developmental stages and sexes in populations in China. Shi ZH; Sun JH J Insect Physiol; 2010 Nov; 56(11):1696-701. PubMed ID: 20615412 [TBL] [Abstract][Full Text] [Related]
33. Mutual interactions between an invasive bark beetle and its associated fungi. Wang B; Salcedo C; Lu M; Sun J Bull Entomol Res; 2012 Feb; 102(1):71-7. PubMed ID: 21777500 [TBL] [Abstract][Full Text] [Related]
34. The effect of inactivation of aldehyde dehydrogenase on pheromone production by a gut bacterium of an invasive bark beetle, Dendroctonus valens. Cao Q; Koski TM; Li H; Zhang C; Sun J Insect Sci; 2023 Apr; 30(2):459-472. PubMed ID: 36003004 [TBL] [Abstract][Full Text] [Related]
35. The Role of Wind and Semiochemicals in Mediating Switching Behavior in the Southern Pine Beetle (Coleoptera: Curculionidae: Scolytinae). Sullivan BT; Brownie C Environ Entomol; 2022 Apr; 51(2):340-350. PubMed ID: 35178556 [TBL] [Abstract][Full Text] [Related]
36. Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. Adams AS; Boone CK; Bohlmann J; Raffa KF J Chem Ecol; 2011 Aug; 37(8):808-17. PubMed ID: 21710365 [TBL] [Abstract][Full Text] [Related]
37. An enhanced lure for eastern populations of the North American spruce beetle, Dendroctonus rufipennis Kirby (Coleoptera: Curculionidae). Pureswaran DS; Isitt R; Huber DPW J Econ Entomol; 2024 Aug; 117(4):1545-1552. PubMed ID: 38824447 [TBL] [Abstract][Full Text] [Related]
38. Western Pine Beetle Populations in Arizona and California Differ in the Composition of Their Aggregation Pheromones. Pureswaran DS; Hofstetter RW; Sullivan BT; Grady AM; Brownie C J Chem Ecol; 2016 May; 42(5):404-13. PubMed ID: 27125814 [TBL] [Abstract][Full Text] [Related]
39. Monoterpenyl esters in juvenile mountain pine beetle and sex-specific release of the aggregation pheromone Chiu CC; Keeling CI; Bohlmann J Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3652-3657. PubMed ID: 29555742 [TBL] [Abstract][Full Text] [Related]
40. Electrophysiological and olfactometer responses of two histerid predators to three pine bark beetle pheromones. Shepherd WP; Sullivan BT; Goyer RA; Klepzig KD J Chem Ecol; 2005 May; 31(5):1101-10. PubMed ID: 16124235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]