BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 19389361)

  • 1. Chordin is required for neural but not axial development in sea urchin embryos.
    Bradham CA; Oikonomou C; Kühn A; Core AB; Modell JW; McClay DR; Poustka AJ
    Dev Biol; 2009 Apr; 328(2):221-33. PubMed ID: 19389361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
    Lapraz F; Besnardeau L; Lepage T
    PLoS Biol; 2009 Nov; 7(11):e1000248. PubMed ID: 19956794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM; Burke RD
    Dev Biol; 2010 Nov; 347(1):71-81. PubMed ID: 20709054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental origin of peripheral ciliary band neurons in the sea urchin embryo.
    Slota LA; Miranda E; Peskin B; McClay DR
    Dev Biol; 2020 Mar; 459(2):72-78. PubMed ID: 31881199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos.
    Bradham CA; McClay DR
    Development; 2006 Jan; 133(1):21-32. PubMed ID: 16319119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.
    Piacentino ML; Chung O; Ramachandran J; Zuch DT; Yu J; Conaway EA; Reyna AE; Bradham CA
    Dev Biol; 2016 Apr; 412(1):44-56. PubMed ID: 26905309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational model for BMP movement in sea urchin embryos.
    van Heijster P; Hardway H; Kaper TJ; Bradham CA
    J Theor Biol; 2014 Dec; 363():277-89. PubMed ID: 25167787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning.
    Rentzsch F; Anton R; Saina M; Hammerschmidt M; Holstein TW; Technau U
    Dev Biol; 2006 Aug; 296(2):375-87. PubMed ID: 16828077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo.
    Gross JM; Peterson RE; Wu SY; McClay DR
    Development; 2003 May; 130(9):1989-99. PubMed ID: 12642501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Burke RD
    Dev Biol; 2007 Feb; 302(2):494-503. PubMed ID: 17101124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering and modelling the TGF-β signalling interplays specifying the dorsal-ventral axis of the sea urchin embryo.
    Floc'hlay S; Molina MD; Hernandez C; Haillot E; Thomas-Chollier M; Lepage T; Thieffry D
    Development; 2021 Jan; 148(2):. PubMed ID: 33298464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus.
    Tsironis I; Paganos P; Gouvi G; Tsimpos P; Stamopoulou A; Arnone MI; Flytzanis CN
    Dev Biol; 2021 Jul; 475():131-144. PubMed ID: 33484706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short- and long-range functions of Goosecoid in zebrafish axis formation are independent of Chordin, Noggin 1 and Follistatin-like 1b.
    Dixon Fox M; Bruce AE
    Development; 2009 May; 136(10):1675-85. PubMed ID: 19369398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BMPs and chordin regulate patterning of the directive axis in a sea anemone.
    Saina M; Genikhovich G; Renfer E; Technau U
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18592-7. PubMed ID: 19833871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo.
    Molina MD; de Crozé N; Haillot E; Lepage T
    Curr Opin Genet Dev; 2013 Aug; 23(4):445-53. PubMed ID: 23769944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM
    Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.