These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 19389384)
1. Identification of aspartic acid-203 in human thymidine phosphorylase as an important residue for both catalysis and non-competitive inhibition by the small molecule "crystallization chaperone" 5'-O-tritylinosine (KIN59). Bronckaers A; Aguado L; Negri A; Camarasa MJ; Balzarini J; Pérez-Pérez MJ; Gago F; Liekens S Biochem Pharmacol; 2009 Aug; 78(3):231-40. PubMed ID: 19389384 [TBL] [Abstract][Full Text] [Related]
2. Thymidine phosphorylase is noncompetitively inhibited by 5'-O-trityl-inosine (KIN59) and related compounds. Liekens S; Balzarini J; Hernández AI; De Clercq E; Priego EM; Camarasa MJ; Pérez-Pérez MJ Nucleosides Nucleotides Nucleic Acids; 2006; 25(9-11):975-80. PubMed ID: 17065049 [TBL] [Abstract][Full Text] [Related]
3. 5'-O-tritylinosine and analogues as allosteric inhibitors of human thymidine phosphorylase. Casanova E; Hernandez AI; Priego EM; Liekens S; Camarasa MJ; Balzarini J; Pérez-Pérez MJ J Med Chem; 2006 Sep; 49(18):5562-70. PubMed ID: 16942029 [TBL] [Abstract][Full Text] [Related]
4. The thymidine phosphorylase inhibitor 5'-O-tritylinosine (KIN59) is an antiangiogenic multitarget fibroblast growth factor-2 antagonist. Liekens S; Bronckaers A; Belleri M; Bugatti A; Sienaert R; Ribatti D; Nico B; Gigante A; Casanova E; Opdenakker G; Pérez-Pérez MJ; Balzarini J; Presta M Mol Cancer Ther; 2012 Apr; 11(4):817-29. PubMed ID: 22302099 [TBL] [Abstract][Full Text] [Related]
5. [Influence of the thymidine phosphorylase (platelet-derived endothelial cell growth factor) on tumor angiogenesis. Catalytic activity of enzyme inhibitors]. Miszczak-Zaborska E; Smolarek M; Bartkowiak J Postepy Biochem; 2010; 56(1):61-6. PubMed ID: 20499682 [TBL] [Abstract][Full Text] [Related]
7. The nucleoside derivative 5'-O-trityl-inosine (KIN59) suppresses thymidine phosphorylase-triggered angiogenesis via a noncompetitive mechanism of action. Liekens S; Hernández AI; Ribatti D; De Clercq E; Camarasa MJ; Pérez-Pérez MJ; Balzarini J J Biol Chem; 2004 Jul; 279(28):29598-605. PubMed ID: 15123637 [TBL] [Abstract][Full Text] [Related]
8. The role of phosphate in the action of thymidine phosphorylase inhibitors: Implications for the catalytic mechanism. Jain HV; Rasheed R; Kalman TI Bioorg Med Chem Lett; 2010 Mar; 20(5):1648-51. PubMed ID: 20138520 [TBL] [Abstract][Full Text] [Related]
9. Role of histidine-85 in the catalytic mechanism of thymidine phosphorylase as assessed by targeted molecular dynamics simulations and quantum mechanical calculations. Mendieta J; Martín-Santamaría S; Priego EM; Balzarini J; Camarasa MJ; Pérez-Pérez MJ; Gago F Biochemistry; 2004 Jan; 43(2):405-14. PubMed ID: 14717594 [TBL] [Abstract][Full Text] [Related]
10. 3'-Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: the peculiarity of the binding on the basis of X-ray study. Timofeev V; Abramchik Y; Zhukhlistova N; Muravieva T; Fateev I; Esipov R; Kuranova I Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):1155-65. PubMed ID: 24699659 [TBL] [Abstract][Full Text] [Related]
11. Regulation of cancer progression by inhibition of angiogenesis and induction of apoptosis. Liekens S Verh K Acad Geneeskd Belg; 2008; 70(3):175-91. PubMed ID: 18669159 [TBL] [Abstract][Full Text] [Related]
12. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants. Cetinbaş N; Macauley MS; Stubbs KA; Drapala R; Vocadlo DJ Biochemistry; 2006 Mar; 45(11):3835-44. PubMed ID: 16533067 [TBL] [Abstract][Full Text] [Related]
13. X-ray structure of the R69D phosphatidylinositol-specific phospholipase C enzyme: insight into the role of calcium and surrounding amino acids in active site geometry and catalysis. Apiyo D; Zhao L; Tsai MD; Selby TL Biochemistry; 2005 Aug; 44(30):9980-9. PubMed ID: 16042375 [TBL] [Abstract][Full Text] [Related]
15. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme. Hung HC; Chien YC; Hsieh JY; Chang GG; Liu GY Biochemistry; 2005 Sep; 44(38):12737-45. PubMed ID: 16171388 [TBL] [Abstract][Full Text] [Related]
16. Catalytic mechanism of inulinase from Arthrobacter sp. S37. Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004 [TBL] [Abstract][Full Text] [Related]
17. Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum. Marienhagen J; Sandalova T; Sahm H; Eggeling L; Schneider G Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):675-85. PubMed ID: 18560156 [TBL] [Abstract][Full Text] [Related]
18. Kinetic parameters and recognition of thymidine analogues with varying functional groups by thymidine phosphorylase. Hatano A; Harano A; Takigawa Y; Naramoto Y; Toda K; Nakagomi Y; Yamada H Bioorg Med Chem; 2008 Apr; 16(7):3866-70. PubMed ID: 18272369 [TBL] [Abstract][Full Text] [Related]
19. Identification of an inhibitor binding site of poly(ADP-ribose) glycohydrolase. Koh DW; Patel CN; Ramsinghani S; Slama JT; Oliveira MA; Jacobson MK Biochemistry; 2003 May; 42(17):4855-63. PubMed ID: 12718526 [TBL] [Abstract][Full Text] [Related]
20. Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site. Axarli I; Dhavala P; Papageorgiou AC; Labrou NE J Mol Biol; 2009 Jan; 385(3):984-1002. PubMed ID: 19014949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]