These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 1938970)
1. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. Derman AI; Beckwith J J Bacteriol; 1991 Dec; 173(23):7719-22. PubMed ID: 1938970 [TBL] [Abstract][Full Text] [Related]
2. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Derman AI; Prinz WA; Belin D; Beckwith J Science; 1993 Dec; 262(5140):1744-7. PubMed ID: 8259521 [TBL] [Abstract][Full Text] [Related]
3. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. Stewart EJ; Aslund F; Beckwith J EMBO J; 1998 Oct; 17(19):5543-50. PubMed ID: 9755155 [TBL] [Abstract][Full Text] [Related]
4. In vivo formation of Cu,Zn superoxide dismutase disulfide bond in Escherichia coli. Battistoni A; Mazzetti AP; Rotilio G FEBS Lett; 1999 Jan; 443(3):313-6. PubMed ID: 10025954 [TBL] [Abstract][Full Text] [Related]
5. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Zapun A; Cooper L; Creighton TE Biochemistry; 1994 Feb; 33(7):1907-14. PubMed ID: 8110795 [TBL] [Abstract][Full Text] [Related]
6. Escherichia coli alkaline phosphatase localized to the cytoplasm slowly acquires enzymatic activity in cells whose growth has been suspended: a caution for gene fusion studies. Derman AI; Beckwith J J Bacteriol; 1995 Jul; 177(13):3764-70. PubMed ID: 7601842 [TBL] [Abstract][Full Text] [Related]
8. A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Andersen CL; Matthey-Dupraz A; Missiakas D; Raina S Mol Microbiol; 1997 Oct; 26(1):121-32. PubMed ID: 9383195 [TBL] [Abstract][Full Text] [Related]
9. Disulfide Bonds of Proteins Displayed on Spores of Bacillus subtilis Can Occur Spontaneously. Richter A; Kim W; Kim JH; Schumann W Curr Microbiol; 2015 Jul; 71(1):156-61. PubMed ID: 26024714 [TBL] [Abstract][Full Text] [Related]
10. Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo. Akiyama Y; Ito K J Biol Chem; 1993 Apr; 268(11):8146-50. PubMed ID: 8463326 [TBL] [Abstract][Full Text] [Related]
11. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Hatahet F; Nguyen VD; Salo KE; Ruddock LW Microb Cell Fact; 2010 Sep; 9():67. PubMed ID: 20836848 [TBL] [Abstract][Full Text] [Related]
12. Efficient export of human growth hormone, interferon α2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation. Alanen HI; Walker KL; Lourdes Velez Suberbie M; Matos CF; Bönisch S; Freedman RB; Keshavarz-Moore E; Ruddock LW; Robinson C Biochim Biophys Acta; 2015 Mar; 1853(3):756-63. PubMed ID: 25554517 [TBL] [Abstract][Full Text] [Related]
13. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase. Asgeirsson B; Adalbjörnsson BV; Gylfason GA Biochim Biophys Acta; 2007 Jun; 1774(6):679-87. PubMed ID: 17493882 [TBL] [Abstract][Full Text] [Related]
14. Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways. Faulkner MJ; Veeravalli K; Gon S; Georgiou G; Beckwith J Proc Natl Acad Sci U S A; 2008 May; 105(18):6735-40. PubMed ID: 18456836 [TBL] [Abstract][Full Text] [Related]
15. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. DeLisa MP; Tullman D; Georgiou G Proc Natl Acad Sci U S A; 2003 May; 100(10):6115-20. PubMed ID: 12721369 [TBL] [Abstract][Full Text] [Related]
16. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Rietsch A; Belin D; Martin N; Beckwith J Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13048-53. PubMed ID: 8917542 [TBL] [Abstract][Full Text] [Related]
17. Effect of redox environment on the in vitro and in vivo folding of RTEM-1 beta-lactamase and Escherichia coli alkaline phosphatase. Walker KW; Gilbert HF J Biol Chem; 1994 Nov; 269(45):28487-93. PubMed ID: 7961790 [TBL] [Abstract][Full Text] [Related]
18. Metabolic and genetic control of isoenzyme spectrum of alkaline phosphatase in Escherichia coli. Nesmeyanova MA; Marayeva OB; Severin AI; Kulayev IS Folia Microbiol (Praha); 1978; 23(1):30-6. PubMed ID: 146652 [TBL] [Abstract][Full Text] [Related]
19. Production of disulfide-bonded proteins in Escherichia coli. Berkmen M Protein Expr Purif; 2012 Mar; 82(1):240-51. PubMed ID: 22085722 [TBL] [Abstract][Full Text] [Related]
20. Expression of proteins containing disulfide bonds in an insect cell-free system and confirmation of their arrangements by MALDI-TOF MS. Ezure T; Suzuki T; Shikata M; Ito M; Ando E; Nishimura O; Tsunasawa S Proteomics; 2007 Dec; 7(24):4424-34. PubMed ID: 18072203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]