These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19389733)

  • 1. Protein function annotation from sequence: prediction of residues interacting with RNA.
    Spriggs RV; Murakami Y; Nakamura H; Jones S
    Bioinformatics; 2009 Jun; 25(12):1492-7. PubMed ID: 19389733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PiRaNhA: a server for the computational prediction of RNA-binding residues in protein sequences.
    Murakami Y; Spriggs RV; Nakamura H; Jones S
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W412-6. PubMed ID: 20507911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-binding residues in sequence space: conservation and interaction patterns.
    Spriggs RV; Jones S
    Comput Biol Chem; 2009 Oct; 33(5):397-403. PubMed ID: 19700370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRINTR: prediction of RNA binding sites in proteins using SVM and profiles.
    Wang Y; Xue Z; Shen G; Xu J
    Amino Acids; 2008 Aug; 35(2):295-302. PubMed ID: 18235992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of RNA-binding sites in proteins by integrating various sequence information.
    Wang CC; Fang Y; Xiao J; Li M
    Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature.
    Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X
    Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.
    Zhang T; Zhang H; Chen K; Ruan J; Shen S; Kurgan L
    Curr Protein Pept Sci; 2010 Nov; 11(7):609-28. PubMed ID: 20887256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting structural and topological information to improve prediction of RNA-protein binding sites.
    Maetschke SR; Yuan Z
    BMC Bioinformatics; 2009 Oct; 10():341. PubMed ID: 19835626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.
    Choi D; Park B; Chae H; Lee W; Han K
    BMC Syst Biol; 2017 Mar; 11(Suppl 2):16. PubMed ID: 28361677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A boosting approach for prediction of protein-RNA binding residues.
    Tang Y; Liu D; Wang Z; Wen T; Deng L
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):465. PubMed ID: 29219069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein-binding RNA nucleotides using the feature-based removal of data redundancy and the interaction propensity of nucleotide triplets.
    Choi S; Han K
    Comput Biol Med; 2013 Nov; 43(11):1687-97. PubMed ID: 24209914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of RNA binding sites in a protein using SVM and PSSM profile.
    Kumar M; Gromiha MM; Raghava GP
    Proteins; 2008 Apr; 71(1):189-94. PubMed ID: 17932917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MOTIF-BASED METHOD FOR PREDICTING INTERFACIAL RESIDUES IN BOTH THE RNA AND PROTEIN COMPONENTS OF PROTEIN-RNA COMPLEXES.
    Muppirala U; Lewis BA; Mann CM; Dobbs D
    Pac Symp Biocomput; 2016; 21():445-455. PubMed ID: 26776208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of RNA-binding amino acids from protein and RNA sequences.
    Choi S; Han K
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S7. PubMed ID: 22373313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning.
    Li P; Liu ZP
    Bioinformatics; 2022 Apr; 38(8):2162-2168. PubMed ID: 35150250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient mapping of RNA-binding residues in RNA-binding proteins using local sequence features of binding site residues in protein-RNA complexes.
    Agarwal A; Kant S; Bahadur RP
    Proteins; 2023 Sep; 91(9):1361-1379. PubMed ID: 37254800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites.
    Murakami Y; Mizuguchi K
    Bioinformatics; 2010 Aug; 26(15):1841-8. PubMed ID: 20529890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.