These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19389770)

  • 21. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LocateP: genome-scale subcellular-location predictor for bacterial proteins.
    Zhou M; Boekhorst J; Francke C; Siezen RJ
    BMC Bioinformatics; 2008 Mar; 9():173. PubMed ID: 18371216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signal peptidase I processed secretory signal sequences: Selection for and against specific amino acids at the second position of mature protein.
    Zalucki YM; Jennings MP
    Biochem Biophys Res Commun; 2017 Feb; 483(3):972-977. PubMed ID: 28088521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of novel peptide hormones in the human proteome by hidden Markov model screening.
    Mirabeau O; Perlas E; Severini C; Audero E; Gascuel O; Possenti R; Birney E; Rosenthal N; Gross C
    Genome Res; 2007 Mar; 17(3):320-7. PubMed ID: 17284679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flanking signal and mature peptide residues influence signal peptide cleavage.
    Choo KH; Ranganathan S
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S15. PubMed ID: 19091014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis.
    Jing L; Guo D; Hu W; Niu X
    BMC Bioinformatics; 2017 Mar; 18(1):166. PubMed ID: 28284182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Genome-wide identification of exported proteins of the novel bacterium Phenylobacterium zucineum HLK1(T) using a consensus computational strategy].
    Yan ZY; Ding ZH
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2009 Mar; 38(2):174-80. PubMed ID: 19363826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signal-3L: A 3-layer approach for predicting signal peptides.
    Shen HB; Chou KC
    Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational prediction of the functional effects of amino acid substitutions in signal peptides using a model-based approach.
    Hon LS; Zhang Y; Kaminker JS; Zhang Z
    Hum Mutat; 2009 Jan; 30(1):99-106. PubMed ID: 18570327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv.
    Målen H; Berven FS; Fladmark KE; Wiker HG
    Proteomics; 2007 May; 7(10):1702-18. PubMed ID: 17443846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational identification of beta-barrel outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as putative vaccine candidates.
    Pajón R; Yero D; Lage A; Llanes A; Borroto CJ
    Tuberculosis (Edinb); 2006; 86(3-4):290-302. PubMed ID: 16542876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Signal Peptide Cleavage Sites with Subsite-Coupled and Template Matching Fusion Algorithm.
    Zhang SW; Zhang TH; Zhang JN; Huang Y
    Mol Inform; 2014 Mar; 33(3):230-9. PubMed ID: 27485691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SignalP 5.0 improves signal peptide predictions using deep neural networks.
    Almagro Armenteros JJ; Tsirigos KD; Sønderby CK; Petersen TN; Winther O; Brunak S; von Heijne G; Nielsen H
    Nat Biotechnol; 2019 Apr; 37(4):420-423. PubMed ID: 30778233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validating subcellular localization prediction tools with mycobacterial proteins.
    Restrepo-Montoya D; Vizcaíno C; Niño LF; Ocampo M; Patarroyo ME; Patarroyo MA
    BMC Bioinformatics; 2009 May; 10():134. PubMed ID: 19422713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SPEPlip: the detection of signal peptide and lipoprotein cleavage sites.
    Fariselli P; Finocchiaro G; Casadio R
    Bioinformatics; 2003 Dec; 19(18):2498-9. PubMed ID: 14668245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Computational analysis of signal peptide-dependent secreted protein in Caenorthaditis elegans ws123].
    Wu HZ; Li CY; Zhu YY; Bi YF
    Yi Chuan; 2006 Apr; 28(4):470-8. PubMed ID: 16606602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server.
    Käll L; Krogh A; Sonnhammer EL
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W429-32. PubMed ID: 17483518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A combined transmembrane topology and signal peptide prediction method.
    Käll L; Krogh A; Sonnhammer EL
    J Mol Biol; 2004 May; 338(5):1027-36. PubMed ID: 15111065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT.
    Chen Y; Yu P; Luo J; Jiang Y
    Mamm Genome; 2003 Dec; 14(12):859-65. PubMed ID: 14724739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of twin-arginine signal peptides.
    Bendtsen JD; Nielsen H; Widdick D; Palmer T; Brunak S
    BMC Bioinformatics; 2005 Jul; 6():167. PubMed ID: 15992409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.