BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19389779)

  • 1. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis.
    Cesselin B; Ali D; Gratadoux JJ; Gaudu P; Duwat P; Gruss A; El Karoui M
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2274-2281. PubMed ID: 19389779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress.
    Turner MS; Tan YP; Giffard PM
    Appl Environ Microbiol; 2007 Oct; 73(19):6144-9. PubMed ID: 17675432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis.
    Vido K; Diemer H; Van Dorsselaer A; Leize E; Juillard V; Gruss A; Gaudu P
    J Bacteriol; 2005 Jan; 187(2):601-10. PubMed ID: 15629931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LmrCD is a major multidrug resistance transporter in Lactococcus lactis.
    Lubelski J; de Jong A; van Merkerk R; Agustiandari H; Kuipers OP; Kok J; Driessen AJ
    Mol Microbiol; 2006 Aug; 61(3):771-81. PubMed ID: 16879641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid- and multistress-resistant mutants of Lactococcus lactis : identification of intracellular stress signals.
    Rallu F; Gruss A; Ehrlich SD; Maguin E
    Mol Microbiol; 2000 Feb; 35(3):517-28. PubMed ID: 10672175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis.
    Frees D; Varmanen P; Ingmer H
    Mol Microbiol; 2001 Jul; 41(1):93-103. PubMed ID: 11454203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistance to bacteriocin Lcn972 improves oxygen tolerance of Lactococcus lactis IPLA947 without compromising its performance as a dairy starter.
    López-González MJ; Campelo AB; Picon A; Rodríguez A; Martínez B
    BMC Microbiol; 2018 Jul; 18(1):76. PubMed ID: 30029618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CcpA regulation of aerobic and respiration growth in Lactococcus lactis.
    Gaudu P; Lamberet G; Poncet S; Gruss A
    Mol Microbiol; 2003 Oct; 50(1):183-92. PubMed ID: 14507373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis.
    Liu CQ; Charoechai P; Khunajakr N; Deng YM; Widodo ; Dunn NW
    Gene; 2002 Sep; 297(1-2):241-7. PubMed ID: 12384305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.
    Mancini S; Abicht HK; Gonskikh Y; Solioz M
    Mol Microbiol; 2015 Feb; 95(4):645-59. PubMed ID: 25430846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of
    Sadovskaya I; Vinogradov E; Courtin P; Armalyte J; Meyrand M; Giaouris E; Palussière S; Furlan S; Péchoux C; Ainsworth S; Mahony J; van Sinderen D; Kulakauskas S; Guérardel Y; Chapot-Chartier MP
    mBio; 2017 Sep; 8(5):. PubMed ID: 28900021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of metabolic flux on stress response pathways in Lactococcus lactis.
    Duwat P; Ehrlich SD; Gruss A
    Mol Microbiol; 1999 Feb; 31(3):845-58. PubMed ID: 10048028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactococcus lactis, a bacterial model for stress responses and survival.
    Duwat P; Cesselin B; Sourice S; Gruss A
    Int J Food Microbiol; 2000 Apr; 55(1-3):83-6. PubMed ID: 10791722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Porphyromonas gingivalis FeoB2 in metal uptake and oxidative stress protection.
    He J; Miyazaki H; Anaya C; Yu F; Yeudall WA; Lewis JP
    Infect Immun; 2006 Jul; 74(7):4214-23. PubMed ID: 16790796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk.
    Tachon S; Brandsma JB; Yvon M
    Appl Environ Microbiol; 2010 Mar; 76(5):1311-9. PubMed ID: 20038695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of CinD (YtjD) of Lactococcus lactis, a copper-induced nitroreductase involved in defense against oxidative stress.
    Mermod M; Mourlane F; Waltersperger S; Oberholzer AE; Baumann U; Solioz M
    J Bacteriol; 2010 Aug; 192(16):4172-80. PubMed ID: 20562311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance to high osmolality of Lactococcus lactis subsp. lactis and cremoris is related to the activity of a betaine transport system.
    Obis D; Guillot A; Mistou MY
    FEMS Microbiol Lett; 2001 Aug; 202(1):39-44. PubMed ID: 11506905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Attenuation of Uranyl Toxicity by Glutathione in Lactococcus lactis.
    Obeid MH; Oertel J; Solioz M; Fahmy K
    Appl Environ Microbiol; 2016 Jun; 82(12):3563-3571. PubMed ID: 27060118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactococcus lactis and stress.
    Rallu F; Gruss A; Maguin E
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):243-51. PubMed ID: 8879409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.