These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1939052)

  • 1. Mitochondrial phosphate transport. The Saccharomyces cerevisiae (threonine 43 to cysteine) mutant protein explicitly identifies transport with genomic sequence.
    Phelps A; Wohlrab H
    J Biol Chem; 1991 Oct; 266(30):19882-5. PubMed ID: 1939052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast mitochondrial phosphate transport protein expressed in Escherichia coli. Site-directed mutations at threonine-43 and at a similar location in the second tandem repeat (isoleucine-141).
    Wohlrab H; Briggs C
    Biochemistry; 1994 Aug; 33(32):9371-5. PubMed ID: 8068613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial phosphate transport. N-ethylmaleimide insensitivity correlates with absence of beef heart-like Cys42 from the Saccharomyces cerevisiae phosphate transport protein.
    Guérin B; Bukusoglu C; Rakotomanana F; Wohlrab H
    J Biol Chem; 1990 Nov; 265(32):19736-41. PubMed ID: 2246257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homodimeric mitochondrial phosphate transport protein. Transient subunit/subunit contact site between the transport relevant transmembrane helices A.
    Phelps A; Wohlrab H
    Biochemistry; 2004 May; 43(20):6200-7. PubMed ID: 15147204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of the mitochondrial phosphate transport protein gene from the yeast Saccharomyces cerevisiae.
    Phelps A; Schobert CT; Wohlrab H
    Biochemistry; 1991 Jan; 30(1):248-52. PubMed ID: 1840493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial phosphate transport protein. Reversions of inhibitory conservative mutations identify four helices and a nonhelix protein segment with transmembrane interactions and Asp39, Glu137, and Ser158 as nonessential for transport.
    Phelps A; Briggs C; Haefele A; Mincone L; Ligeti E; Wohlrab H
    Biochemistry; 2001 Feb; 40(7):2080-6. PubMed ID: 11329276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reversible antiport-uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine.
    Schroers A; Krämer R; Wohlrab H
    J Biol Chem; 1997 Apr; 272(16):10558-64. PubMed ID: 9099701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replacements of basic and hydroxyl amino acids identify structurally and functionally sensitive regions of the mitochondrial phosphate transport protein.
    Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1999 Apr; 38(16):5096-102. PubMed ID: 10213613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH gradient-dependent phosphate transport catalyzed by the purified mitochondrial phosphate transport protein.
    Wohlrab H; Flowers N
    J Biol Chem; 1982 Jan; 257(1):28-31. PubMed ID: 7053371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial phosphate transport. Import of the H+/Pi symporter and role of the presequence.
    Pratt RD; Ferreira GC; Pedersen PL
    J Biol Chem; 1991 Jan; 266(2):1276-80. PubMed ID: 1985946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges.
    Ferreira GC; Pedersen PL
    J Bioenerg Biomembr; 1993 Oct; 25(5):483-92. PubMed ID: 8132488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doxorubicin inhibits the phosphate-transport protein reconstituted in liposomes. A study on the mechanism of the inhibition.
    Müller M; Cheneval D; Carafoli E
    Eur J Biochem; 1984 May; 140(3):447-52. PubMed ID: 6723644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial oxoglutarate carrier: cysteine-scanning mutagenesis of transmembrane domain IV and sensitivity of Cys mutants to sulfhydryl reagents.
    Stipani V; Cappello AR; Daddabbo L; Natuzzi D; Miniero DV; Stipani I; Palmieri F
    Biochemistry; 2001 Dec; 40(51):15805-10. PubMed ID: 11747458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of conserved cysteine residues in the catalytic subunit of the yeast vacuolar H(+)-ATPase.
    Taiz L; Nelson H; Maggert K; Morgan L; Yatabe B; Taiz SL; Rubinstein B; Nelson N
    Biochim Biophys Acta; 1994 Sep; 1194(2):329-34. PubMed ID: 7918545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single replacement constructs of all hydroxyl, basic, and acidic amino acids identify new function and structure-sensitive regions of the mitochondrial phosphate transport protein.
    Wohlrab H; Annese V; Haefele A
    Biochemistry; 2002 Mar; 41(9):3254-61. PubMed ID: 11863464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Saccharomyces cerevisiae gene that encodes a mitochondrial phosphate transporter-like protein.
    Takabatake R; Siddique AB; Kouchi H; Izui K; Hata S
    J Biochem; 2001 May; 129(5):827-33. PubMed ID: 11328608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli.
    Frillingos S; Sun J; Gonzalez A; Kaback HR
    Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae.
    Martinez P; Persson BL
    Mol Gen Genet; 1998 Jun; 258(6):628-38. PubMed ID: 9671031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence of the N-terminal formic acid fragment and location of the N-ethylmaleimide-binding site of the phosphate transport protein from beef heart mitochondria.
    Kolbe HV; Wohlrab H
    J Biol Chem; 1985 Dec; 260(29):15899-906. PubMed ID: 4066697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial phosphate transport protein. replacements of glutamic, aspartic, and histidine residues affect transport and protein conformation and point to a coupled proton transport path.
    Phelps A; Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1996 Aug; 35(33):10757-62. PubMed ID: 8718866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.