BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 19390602)

  • 1. The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition.
    Kroutter EN; Belancio VP; Wagstaff BJ; Roy-Engel AM
    PLoS Genet; 2009 Apr; 5(4):e1000458. PubMed ID: 19390602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SINE Retrotransposition: Evaluation of Alu Activity and Recovery of De Novo Inserts.
    Ade C; Roy-Engel AM
    Methods Mol Biol; 2016; 1400():183-201. PubMed ID: 26895055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LINE-1 ORF1 protein enhances Alu SINE retrotransposition.
    Wallace N; Wagstaff BJ; Deininger PL; Roy-Engel AM
    Gene; 2008 Aug; 419(1-2):1-6. PubMed ID: 18534786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of Conserved Amino Acids in the C-Terminal Region of LINE-1 ORF2p in Retrotransposition.
    Christian CM; Sokolowski M; deHaro D; Kines KJ; Belancio VP
    Genetics; 2017 Mar; 205(3):1139-1149. PubMed ID: 28100588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion.
    Wagstaff BJ; Hedges DJ; Derbes RS; Campos Sanchez R; Chiaromonte F; Makova KD; Roy-Engel AM
    PLoS Genet; 2012; 8(8):e1002842. PubMed ID: 22912586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes.
    Moldovan JB; Kopera HC; Liu Y; Garcia-Canadas M; Catalina P; Leone PE; Sanchez L; Kitzman JO; Kidd JM; Garcia-Perez JL; Moran JV
    bioRxiv; 2024 May; ():. PubMed ID: 38746229
    [No Abstract]   [Full Text] [Related]  

  • 7. Molecular reconstruction of extinct LINE-1 elements and their interaction with nonautonomous elements.
    Wagstaff BJ; Kroutter EN; Derbes RS; Belancio VP; Roy-Engel AM
    Mol Biol Evol; 2013 Jan; 30(1):88-99. PubMed ID: 22918960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes.
    Moldovan JB; Kopera HC; Liu Y; Garcia-Canadas M; Catalina P; Leone PE; Sanchez L; Kitzman JO; Kidd JM; Garcia-Perez JL; Moran JV
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38850156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved 3' UTR stem-loop structure in L1 and Alu transposons in human genome: possible role in retrotransposition.
    Grechishnikova D; Poptsova M
    BMC Genomics; 2016 Dec; 17(1):992. PubMed ID: 27914481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrotransposition of marked SVA elements by human L1s in cultured cells.
    Hancks DC; Goodier JL; Mandal PK; Cheung LE; Kazazian HH
    Hum Mol Genet; 2011 Sep; 20(17):3386-400. PubMed ID: 21636526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The minimal active human SVA retrotransposon requires only the 5'-hexamer and Alu-like domains.
    Hancks DC; Mandal PK; Cheung LE; Kazazian HH
    Mol Cell Biol; 2012 Nov; 32(22):4718-26. PubMed ID: 23007156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery.
    Raiz J; Damert A; Chira S; Held U; Klawitter S; Hamdorf M; Löwer J; Strätling WH; Löwer R; Schumann GG
    Nucleic Acids Res; 2012 Feb; 40(4):1666-83. PubMed ID: 22053090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition.
    Moldovan JB; Moran JV
    PLoS Genet; 2015 May; 11(5):e1005121. PubMed ID: 25951186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LINEs, SINEs and other retroelements: do birds of a feather flock together?
    Roy-Engel AM
    Front Biosci (Landmark Ed); 2012 Jan; 17(4):1345-61. PubMed ID: 22201808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective inhibition of Alu retrotransposition by APOBEC3G.
    Hulme AE; Bogerd HP; Cullen BR; Moran JV
    Gene; 2007 Apr; 390(1-2):199-205. PubMed ID: 17079095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements.
    Wagstaff BJ; Barnerssoi M; Roy-Engel AM
    PLoS One; 2011 May; 6(5):e19672. PubMed ID: 21572950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment of processed pseudogene transcripts in L1-ribonucleoprotein particles.
    Mandal PK; Ewing AD; Hancks DC; Kazazian HH
    Hum Mol Genet; 2013 Sep; 22(18):3730-48. PubMed ID: 23696454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of L1 ORF2p sequence important to retrotransposition using Bipartile Alu retrotransposition (BAR).
    Christian CM; deHaro D; Kines KJ; Sokolowski M; Belancio VP
    Nucleic Acids Res; 2016 Jun; 44(10):4818-34. PubMed ID: 27095191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating different DNA binding domains to modulate L1 ORF2p-driven site-specific retrotransposition events in human cells.
    Ade CM; Derbes RS; Wagstaff BJ; Linker SB; White TB; Deharo D; Belancio VP; Ivics Z; Roy-Engel AM
    Gene; 2018 Feb; 642():188-198. PubMed ID: 29154869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active human retrotransposons: variation and disease.
    Hancks DC; Kazazian HH
    Curr Opin Genet Dev; 2012 Jun; 22(3):191-203. PubMed ID: 22406018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.