These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19390633)

  • 41. Detection, distribution and selection of microsatellites (SSRs) in the genome of the yeast Saccharomyces cerevisiae as molecular markers.
    Pérez MA; Gallego FJ; Martínez I; Hidalgo P
    Lett Appl Microbiol; 2001 Dec; 33(6):461-6. PubMed ID: 11737632
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains.
    Marullo P; Aigle M; Bely M; Masneuf-Pomarède I; Durrens P; Dubourdieu D; Yvert G
    FEMS Yeast Res; 2007 Sep; 7(6):941-52. PubMed ID: 17537182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Niche-driven evolution of metabolic and life-history strategies in natural and domesticated populations of Saccharomyces cerevisiae.
    Spor A; Nidelet T; Simon J; Bourgais A; de Vienne D; Sicard D
    BMC Evol Biol; 2009 Dec; 9():296. PubMed ID: 20028531
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118.
    Novo M; Bigey F; Beyne E; Galeote V; Gavory F; Mallet S; Cambon B; Legras JL; Wincker P; Casaregola S; Dequin S
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16333-8. PubMed ID: 19805302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae.
    Borneman AR; Forgan AH; Kolouchova R; Fraser JA; Schmidt SA
    G3 (Bethesda); 2016 Apr; 6(4):957-71. PubMed ID: 26869621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards.
    de Celis M; Ruiz J; Martín-Santamaría M; Alonso A; Marquina D; Navascués E; Gómez-Flechoso MÁ; Belda I; Santos A
    Lett Appl Microbiol; 2019 Jun; 68(6):580-588. PubMed ID: 30929264
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: towards a new domesticated species.
    Albertin W; Marullo P; Aigle M; Bourgais A; Bely M; Dillmann C; DE Vienne D; Sicard D
    J Evol Biol; 2009 Nov; 22(11):2157-70. PubMed ID: 19765175
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The spatial scale of genetic differentiation in a model organism: the wild yeast Saccharomyces paradoxus.
    Koufopanou V; Hughes J; Bell G; Burt A
    Philos Trans R Soc Lond B Biol Sci; 2006 Nov; 361(1475):1941-6. PubMed ID: 17028086
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellar-Associated Saccharomyces cerevisiae Population Structure Revealed High-Level Diversity and Perennial Persistence at Sauternes Wine Estates.
    Börlin M; Venet P; Claisse O; Salin F; Legras JL; Masneuf-Pomarede I
    Appl Environ Microbiol; 2016 May; 82(10):2909-2918. PubMed ID: 26969698
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intrastrain genomic and phenotypic variability of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments.
    Franco-Duarte R; Bigey F; Carreto L; Mendes I; Dequin S; Santos MA; Pais C; Schuller D
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26187909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sml1 Inhibits the DNA Repair Activity of Rev1 in Saccharomyces cerevisiae during Oxidative Stress.
    Yao R; Zhou P; Wu C; Liu L; Wu J
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 32005731
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.
    García-Ríos E; Morard M; Parts L; Liti G; Guillamón JM
    BMC Genomics; 2017 Feb; 18(1):159. PubMed ID: 28196526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Population structure and gene evolution in Saccharomyces cerevisiae.
    Aa E; Townsend JP; Adams RI; Nielsen KM; Taylor JW
    FEMS Yeast Res; 2006 Aug; 6(5):702-15. PubMed ID: 16879422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Persistence of Resident and Transplanted Genotypes of the Undomesticated Yeast Saccharomyces paradoxus in Forest Soil.
    Anderson JB; Kasimer D; Xia W; Schröder NCH; Cichowicz P; Lioniello S; Chakrabarti R; Mohan E; Kohn LM
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29925673
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative genome analysis of a Saccharomyces cerevisiae wine strain.
    Borneman AR; Forgan AH; Pretorius IS; Chambers PJ
    FEMS Yeast Res; 2008 Nov; 8(7):1185-95. PubMed ID: 18778279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus.
    Naumov GI; Naumova ES; Michels CA
    Genetics; 1994 Mar; 136(3):803-12. PubMed ID: 8005435
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The molecular characterization of new types of Saccharomyces cerevisiae×S. kudriavzevii hybrid yeasts unveils a high genetic diversity.
    Peris D; Belloch C; Lopandić K; Álvarez-Pérez JM; Querol A; Barrio E
    Yeast; 2012 Feb; 29(2):81-91. PubMed ID: 22222877
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heterothallism in Saccharomyces cerevisiae isolates from nature: effect of HO locus on the mode of reproduction.
    Katz Ezov T; Chang SL; Frenkel Z; Segrè AV; Bahalul M; Murray AW; Leu JY; Korol A; Kashi Y
    Mol Ecol; 2010 Jan; 19(1):121-31. PubMed ID: 20002587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptive divergence in wine yeasts and their wild relatives suggests a prominent role for introgressions and rapid evolution at noncoding sites.
    Almeida P; Barbosa R; Bensasson D; Gonçalves P; Sampaio JP
    Mol Ecol; 2017 Apr; 26(7):2167-2182. PubMed ID: 28231394
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-gene phylogenetic analysis reveals that shochu-fermenting Saccharomyces cerevisiae strains form a distinct sub-clade of the Japanese sake cluster.
    Futagami T; Kadooka C; Ando Y; Okutsu K; Yoshizaki Y; Setoguchi S; Takamine K; Kawai M; Tamaki H
    Yeast; 2017 Oct; 34(10):407-415. PubMed ID: 28703391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.