These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 19391098)

  • 1. Radical cations of amino acids and peptides: structures and stabilities.
    Hopkinson AC
    Mass Spectrom Rev; 2009; 28(4):655-71. PubMed ID: 19391098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histidine, lysine, and arginine radical cations: isomer control via the choice of auxiliary ligand (L) in the dissociation of [CuII(L)amino acid]*2+ complexes.
    Ke Y; Zhao J; Verkerk UH; Hopkinson AC; Siu KW
    J Phys Chem B; 2007 Dec; 111(51):14318-28. PubMed ID: 18052359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The arginine anomaly: arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations.
    Chen X; Turecek F
    J Am Chem Soc; 2006 Sep; 128(38):12520-30. PubMed ID: 16984203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide cation-radicals. A computational study of the competition between peptide N-Calpha bond cleavage and loss of the side chain in the [GlyPhe-NH2 + 2H]+. cation-radical.
    Turecek F; Syrstad EA; Seymour JL; Chen X; Yao C
    J Mass Spectrom; 2003 Oct; 38(10):1093-104. PubMed ID: 14595859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of protonation sites and conformations of protonated amino acids by IRMPD spectroscopy.
    Wu R; McMahon TB
    Chemphyschem; 2008 Dec; 9(18):2826-35. PubMed ID: 18846594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hidden histidine radical rearrangements upon electron transfer to gas-phase peptide ions. Experimental evidence and theoretical analysis.
    Turecek F; Jones JW; Towle T; Panja S; Nielsen SB; Hvelplund P; Paizs B
    J Am Chem Soc; 2008 Nov; 130(44):14584-96. PubMed ID: 18847261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical-cationic gaseous amino acids: a theoretical study.
    Sutherland KN; Mineau PC; Orlova G
    J Phys Chem A; 2007 Aug; 111(32):7906-14. PubMed ID: 17645316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metals as electron traps. II. Structures, energetics and electron transfer dissociations of ternary Co, Ni and Zn-peptide complexes in the gas phase.
    Turecek F; Holm AI; Panja S; Nielsen SB; Hvelplund P
    J Mass Spectrom; 2009 Oct; 44(10):1518-31. PubMed ID: 19753554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can radical cations of the constituents of nucleic acids be formed in the gas phase using ternary transition metal complexes?
    Wee S; O'Hair RA; McFadyen WD
    Rapid Commun Mass Spectrom; 2005; 19(13):1797-805. PubMed ID: 15945020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the N-terminal basic residue on facile Cα-C bond cleavages of aromatic-containing peptide radical cations.
    Xu M; Song T; Quan Q; Hao Q; Fang DC; Siu CK; Chu IK
    Phys Chem Chem Phys; 2011 Apr; 13(13):5888-96. PubMed ID: 21327275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the proline effect: dissociations of proline radicals formed by electron transfer to protonated Pro-Gly and Gly-Pro dipeptides in the gas phase.
    Hayakawa S; Hashimoto M; Matsubara H; Turecek F
    J Am Chem Soc; 2007 Jun; 129(25):7936-49. PubMed ID: 17550253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-mediated formation of gas-phase amino acid radical cations.
    Barlow CK; Moran D; Radom L; McFadyen WD; O'Hair RA
    J Phys Chem A; 2006 Jul; 110(27):8304-15. PubMed ID: 16821814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals.
    Sun Q; Nelson H; Ly T; Stoltz BM; Julian RR
    J Proteome Res; 2009 Feb; 8(2):958-66. PubMed ID: 19113886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation, isomerization, and dissociation of alpha-carbon-centered and pi-centered glycylglycyltryptophan radical cations.
    Ng DC; Song T; Siu SO; Siu CK; Laskin J; Chu IK
    J Phys Chem B; 2010 Feb; 114(6):2270-80. PubMed ID: 20099850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular hydrogen atom migration along the backbone of cationic and neutral radical tripeptides and subsequent radical-induced dissociations.
    Zhao J; Song T; Xu M; Quan Q; Siu KW; Hopkinson AC; Chu IK
    Phys Chem Chem Phys; 2012 Jun; 14(24):8723-31. PubMed ID: 22614151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation of copper(II) ternary complexes containing cystine.
    Ke Y; Zhao J; Siu KW; Hopkinson AC
    Phys Chem Chem Phys; 2010 Aug; 12(31):9017-28. PubMed ID: 20539872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cysteine radical cation: structures and fragmentation pathways.
    Zhao J; Siu KW; Hopkinson AC
    Phys Chem Chem Phys; 2008 Jan; 10(2):281-8. PubMed ID: 18213413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination of trivalent metal cations to peptides: results from IRMPD spectroscopy and theory.
    Prell JS; Flick TG; Oomens J; Berden G; Williams ER
    J Phys Chem A; 2010 Jan; 114(2):854-60. PubMed ID: 19950916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the secondary structure on dissociation of peptide radical cations: fragmentation of angiotensin III and its analogues.
    Yang Z; Lam C; Chu IK; Laskin J
    J Phys Chem B; 2008 Oct; 112(39):12468-78. PubMed ID: 18781717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.