These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 1939111)
1. Biosynthesis of riboflavin. Studies on the mechanism of L-3,4-dihydroxy-2-butanone 4-phosphate synthase. Volk R; Bacher A J Biol Chem; 1991 Nov; 266(31):20610-8. PubMed ID: 1939111 [TBL] [Abstract][Full Text] [Related]
2. Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase. Volk R; Bacher A J Biol Chem; 1990 Nov; 265(32):19479-85. PubMed ID: 2246238 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli. Richter G; Volk R; Krieger C; Lahm HW; Röthlisberger U; Bacher A J Bacteriol; 1992 Jun; 174(12):4050-6. PubMed ID: 1597419 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of riboflavin in archaea studies on the mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase of Methanococcus jannaschii. Fischer M; Romisch W; Schiffmann S; Kelly M; Oschkinat H; Steinbacher S; Huber R; Eisenreich W; Richter G; Bacher A J Biol Chem; 2002 Nov; 277(44):41410-6. PubMed ID: 12200440 [TBL] [Abstract][Full Text] [Related]
6. Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism. Steinbacher S; Schiffmann S; Richter G; Huber R; Bacher A; Fischer M J Biol Chem; 2003 Oct; 278(43):42256-65. PubMed ID: 12904291 [TBL] [Abstract][Full Text] [Related]
7. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate. Steinbacher S; Schiffmann S; Bacher A; Fischer M Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1338-40. PubMed ID: 15213409 [TBL] [Abstract][Full Text] [Related]
8. Evidence for the Chemical Mechanism of RibB (3,4-Dihydroxy-2-butanone 4-phosphate Synthase) of Riboflavin Biosynthesis. Kenjić N; Meneely KM; Wherritt DJ; Denler MC; Jackson TA; Moran GR; Lamb AL J Am Chem Soc; 2022 Jul; 144(28):12769-12780. PubMed ID: 35802469 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis. Liao DI; Calabrese JC; Wawrzak Z; Viitanen PV; Jordan DB Structure; 2001 Jan; 9(1):11-8. PubMed ID: 11342130 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of riboflavin. Enzymatic formation of the xylene moiety from [14C]ribulose 5-phosphate. Nielsen P; Neuberger G; Floss HG; Bacher A Biochem Biophys Res Commun; 1984 Feb; 118(3):814-20. PubMed ID: 6546684 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine from pentose phosphates. Nielsen P; Neuberger G; Fujii I; Bown DH; Keller PJ; Floss HG; Bacher A J Biol Chem; 1986 Mar; 261(8):3661-9. PubMed ID: 3949782 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for competitive inhibition of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Vibrio cholerae. Islam Z; Kumar A; Singh S; Salmon L; Karthikeyan S J Biol Chem; 2015 May; 290(18):11293-308. PubMed ID: 25792735 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis of riboflavin. Studies on the reaction mechanism of 6,7-dimethyl-8-ribityllumazine synthase. Kis K; Volk R; Bacher A Biochemistry; 1995 Mar; 34(9):2883-92. PubMed ID: 7893702 [TBL] [Abstract][Full Text] [Related]
14. Potential anti-bacterial drug target: structural characterization of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Salmonella typhimurium LT2. Kumar P; Singh M; Gautam R; Karthikeyan S Proteins; 2010 Dec; 78(16):3292-303. PubMed ID: 20806221 [TBL] [Abstract][Full Text] [Related]
15. [Cloning and characterization of a new antibacterial target, 3,4-dihydroxy-2-butanone-4-phosphate synthase]. Jin L; Zhou H; Zhao S; Yang W; Niu S; Wang D Wei Sheng Wu Xue Bao; 2012 Nov; 52(11):1415-20. PubMed ID: 23383514 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of enzymic isomerization and epimerization of D-erythrose 4-phosphate. Hosomi S; Nakai N; Kogita J; Terada T; Mizoguchi T Biochem J; 1986 Nov; 239(3):739-43. PubMed ID: 3827825 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine by heavy riboflavin synthase from Bacillus subtilis. Neuberger G; Bacher A Biochem Biophys Res Commun; 1986 Sep; 139(3):1111-6. PubMed ID: 3094525 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure and biochemical properties of DHBPS from Streptococcus pneumoniae, a potential anti-infective target for Gram-positive bacteria. Li J; Hua Z; Miao L; Jian T; Wei Y; Shasha Z; Shaocheng Z; Zhen G; Hongpeng Z; Ailong H; Deqiang W Protein Expr Purif; 2013 Oct; 91(2):161-8. PubMed ID: 23954596 [TBL] [Abstract][Full Text] [Related]
19. Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase. Fischer M; Bacher A Arch Biochem Biophys; 2008 Jun; 474(2):252-65. PubMed ID: 18298940 [TBL] [Abstract][Full Text] [Related]
20. Carbon-13-enriched carbohydrates: preparation of triose, tetrose, and pentose phosphates. Serianni AS; Pierce J; Barker R Biochemistry; 1979 Apr; 18(7):1192-9. PubMed ID: 218615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]