BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19391463)

  • 21. Apolipoprotein A-1 (apoA-1) deposition in, and release from, the enterocyte brush border: a possible role in transintestinal cholesterol efflux (TICE)?
    Danielsen EM; Hansen GH; Rasmussen K; Niels-Christiansen LL; Frenzel F
    Biochim Biophys Acta; 2012 Mar; 1818(3):530-6. PubMed ID: 22119776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antibodies in the small intestine: mucosal synthesis and deposition of anti-glycosyl IgA, IgM, and IgG in the enterocyte brush border.
    Hansen GH; Niels-Christiansen LL; Immerdal L; Danielsen EM
    Am J Physiol Gastrointest Liver Physiol; 2006 Jul; 291(1):G82-90. PubMed ID: 16565420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycol chitosan: A stabilizer of lipid rafts in the intestinal brush border.
    Danielsen ET; Danielsen EM
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):360-367. PubMed ID: 28034633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface.
    Danielsen EM
    Histochem Cell Biol; 2015 May; 143(5):545-56. PubMed ID: 25526697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. "Nonclassical" secretion of annexin A2 to the lumenal side of the enterocyte brush border membrane.
    Danielsen EM; van Deurs B; Hansen GH
    Biochemistry; 2003 Dec; 42(49):14670-6. PubMed ID: 14661980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ready…aim…fire into the lumen: a new role for enterocyte microvilli in gut host defense.
    Shifrin DA; Tyska MJ
    Gut Microbes; 2012; 3(5):460-2. PubMed ID: 22825496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Staphylococcus aureus enterotoxins A- and B: binding to the enterocyte brush border and uptake by perturbation of the apical endocytic membrane traffic.
    Danielsen EM; Hansen GH; Karlsdóttir E
    Histochem Cell Biol; 2013 Apr; 139(4):513-24. PubMed ID: 23180309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes.
    Danielsen EM
    Biochemistry; 1995 Feb; 34(5):1596-605. PubMed ID: 7849019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intestinal absorption of dipeptides and beta-lactam antibiotics. II. Purification of the binding protein for dipeptides and beta-lactam antibiotics from rabbit small intestinal brush border membranes.
    Kramer W; Gutjahr U; Girbig F; Leipe I
    Biochim Biophys Acta; 1990 Nov; 1030(1):50-9. PubMed ID: 2265192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion.
    Crawley SW; Shifrin DA; Grega-Larson NE; McConnell RE; Benesh AE; Mao S; Zheng Y; Zheng QY; Nam KT; Millis BA; Kachar B; Tyska MJ
    Cell; 2014 Apr; 157(2):433-446. PubMed ID: 24725409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of lipid exchange proteins isolated from small intestinal brush border membrane.
    Lipka G; Schulthess G; Thurnhofer H; Wacker H; Wehrli E; Zeman K; Weber FE; Hauser H
    J Biol Chem; 1995 Mar; 270(11):5917-25. PubMed ID: 7890723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aminopeptidase N (CD13) is a molecular target of the cholesterol absorption inhibitor ezetimibe in the enterocyte brush border membrane.
    Kramer W; Girbig F; Corsiero D; Pfenninger A; Frick W; Jähne G; Rhein M; Wendler W; Lottspeich F; Hochleitner EO; Orsó E; Schmitz G
    J Biol Chem; 2005 Jan; 280(2):1306-20. PubMed ID: 15494415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intestinal cholesterol absorption: identification of different binding proteins for cholesterol and cholesterol absorption inhibitors in the enterocyte brush border membrane.
    Kramer W; Girbig F; Corsiero D; Burger K; Fahrenholz F; Jung C; Müller G
    Biochim Biophys Acta; 2003 Jul; 1633(1):13-26. PubMed ID: 12842191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intestinal alkaline phosphatase: selective endocytosis from the enterocyte brush border during fat absorption.
    Hansen GH; Niels-Christiansen LL; Immerdal L; Nystrøm BT; Danielsen EM
    Am J Physiol Gastrointest Liver Physiol; 2007 Dec; 293(6):G1325-32. PubMed ID: 17947448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A cryptic sequence targets the adhesion complex scaffold ANKS4B to apical microvilli to promote enterocyte brush border assembly.
    Graves MJ; Matoo S; Choi MS; Storad ZA; El Sheikh Idris RA; Pickles BK; Acharya P; Shinder PE; Arvay TO; Crawley SW
    J Biol Chem; 2020 Sep; 295(36):12588-12604. PubMed ID: 32636301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dual role of annexin II in targeting of brush border proteins and in intestinal cell polarity.
    Hein Z; Schmidt S; Zimmer KP; Naim HY
    Differentiation; 2011 Apr; 81(4):243-52. PubMed ID: 21330046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of brush border membrane glycoproteins and glycoenzymes in the proximal and distal rat small intestine.
    Morita A; Miura S; Erickson RH; Sleisenger MH; Kim YS
    Biochim Biophys Acta; 1986 Oct; 883(3):506-16. PubMed ID: 3756218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brush border protocadherin CDHR2 promotes the elongation and maximized packing of microvilli in vivo.
    Pinette JA; Mao S; Millis BA; Krystofiak ES; Faust JJ; Tyska MJ
    Mol Biol Cell; 2019 Jan; 30(1):108-118. PubMed ID: 30403560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intestinal uptake of dipeptides and beta-lactam antibiotics. I. The intestinal uptake system for dipeptides and beta-lactam antibiotics is not part of a brush border membrane peptidase.
    Kramer W; Dechent C; Girbig F; Gutjahr U; Neubauer H
    Biochim Biophys Acta; 1990 Nov; 1030(1):41-9. PubMed ID: 1979919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suckling induces rapid intestinal growth and changes in brush border digestive functions of newborn pigs.
    Zhang H; Malo C; Buddington RK
    J Nutr; 1997 Mar; 127(3):418-26. PubMed ID: 9082025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.