These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 19391722)
1. Work distributions in the T=0 random field Ising model. Illa X; Huguet JM; Vives E Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021123. PubMed ID: 19391722 [TBL] [Abstract][Full Text] [Related]
2. Hysteresis in the T=0 random-field Ising model: beyond metastable dynamics. Salvat-Pujol F; Vives E; Rosinberg ML Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061116. PubMed ID: 19658482 [TBL] [Abstract][Full Text] [Related]
3. Estimation of free-energy differences from computed work distributions: an application of Jarzynski's equality. Echeverria I; Amzel LM J Phys Chem B; 2012 Sep; 116(36):10986-95. PubMed ID: 22849340 [TBL] [Abstract][Full Text] [Related]
4. Crooks fluctuation theorem for a process on a two-dimensional fluid field. Gundermann J; Kantz H; Bröcker J Phys Rev Lett; 2013 Jun; 110(23):234502. PubMed ID: 25167499 [TBL] [Abstract][Full Text] [Related]
5. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group. Fisher DS; Le Doussal P; Monthus C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236 [TBL] [Abstract][Full Text] [Related]
6. Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function. Lippiello E; Corberi F; Zannetti M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036104. PubMed ID: 15903490 [TBL] [Abstract][Full Text] [Related]
7. One-dimensional spin-anisotropic kinetic Ising model subject to quenched disorder. Menyhárd N; Odor G Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021103. PubMed ID: 17930002 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction of the free energy in the metastable region using the path ensemble. Bustillos AT; Heermann DW; Cordeiro CE J Chem Phys; 2004 Sep; 121(10):4804-9. PubMed ID: 15332914 [TBL] [Abstract][Full Text] [Related]
9. High-precision work distributions for extreme nonequilibrium processes in large systems. Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052103. PubMed ID: 25353736 [TBL] [Abstract][Full Text] [Related]
10. Effect of platykurtic and leptokurtic distributions in the random-field Ising model: mean-field approach. Duarte Queirós SM; Crokidakis N; Soares-Pinto DO Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011143. PubMed ID: 19658689 [TBL] [Abstract][Full Text] [Related]
11. Microstructure and velocity of field-driven Ising interfaces moving under a soft stochastic dynamic. Rikvold PA; Kolesik M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066113. PubMed ID: 16241310 [TBL] [Abstract][Full Text] [Related]
12. Numerical verification of the generalized Crooks nonequilibrium work theorem for non-Hamiltonian molecular dynamics simulations. Chelli R; Marsili S; Barducci A; Procacci P J Chem Phys; 2007 Jul; 127(3):034110. PubMed ID: 17655434 [TBL] [Abstract][Full Text] [Related]
13. Correlation functions, free energies, and magnetizations in the two-dimensional random-field Ising model. de Queiroz SL; Stinchcombe RB Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036117. PubMed ID: 11580404 [TBL] [Abstract][Full Text] [Related]
14. Work done and irreversible entropy production in a suddenly quenched quantum spin chain with asymmetrical excitation spectra. Zhong M; Tong P Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032137. PubMed ID: 25871084 [TBL] [Abstract][Full Text] [Related]
15. Two-dimensional Ising transition through a technique from two-state opinion-dynamics models. Galam S; Martins AC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012108. PubMed ID: 25679571 [TBL] [Abstract][Full Text] [Related]
16. Testing ground for fluctuation theorems: The one-dimensional Ising model. Lemos CGO; Santos M; Ferreira AL; Figueiredo W Phys Rev E; 2018 Apr; 97(4-1):042121. PubMed ID: 29758686 [TBL] [Abstract][Full Text] [Related]
17. Fluctuation-dissipation relation in an Ising model without detailed balance. Andrenacci N; Corberi F; Lippiello E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046124. PubMed ID: 16711895 [TBL] [Abstract][Full Text] [Related]
18. Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion. Chelli R; Marsili S; Barducci A; Procacci P J Chem Phys; 2007 Jan; 126(4):044502. PubMed ID: 17286482 [TBL] [Abstract][Full Text] [Related]
19. Critical behavior of the two-dimensional spin-diluted Ising model via the equilibrium ensemble approach. Mazzeo G; Kühn R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3823-36. PubMed ID: 11970217 [TBL] [Abstract][Full Text] [Related]
20. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics. Buendía GM; Rikvold PA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]