These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19391732)

  • 1. Nonequilibrium mode-coupling theory for uniformly sheared systems.
    Chong SH; Kim B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021203. PubMed ID: 19391732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium mode-coupling theory for uniformly sheared underdamped systems.
    Suzuki K; Hayakawa H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012304. PubMed ID: 23410328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of interacting Brownian particles: a diagrammatic formulation.
    Szamel G
    J Chem Phys; 2007 Aug; 127(8):084515. PubMed ID: 17764277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium fluctuation-dissipation relations of interacting Brownian particles driven by shear.
    Krüger M; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011408. PubMed ID: 20365374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode-coupling theory for the steady-state dynamics of active Brownian particles.
    Szamel G
    J Chem Phys; 2019 Mar; 150(12):124901. PubMed ID: 30927902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium dynamics of the Dean-Kawasaki equation: mode-coupling theory and its extension.
    Kim B; Kawasaki K; Jacquin H; van Wijland F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012150. PubMed ID: 24580215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dense colloidal suspensions under time-dependent shear.
    Brader JM; Voigtmann T; Cates ME; Fuchs M
    Phys Rev Lett; 2007 Feb; 98(5):058301. PubMed ID: 17358908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium Ornstein-Zernike relation for Brownian many-body dynamics.
    Brader JM; Schmidt M
    J Chem Phys; 2013 Sep; 139(10):104108. PubMed ID: 24050329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagrammatic kinetic theory for a lattice model of a liquid. I. Theory.
    Feng EH; Andersen HC
    J Chem Phys; 2004 Aug; 121(8):3582-97. PubMed ID: 15303925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory for the dynamics of dense systems of athermal self-propelled particles.
    Szamel G
    Phys Rev E; 2016 Jan; 93(1):012603. PubMed ID: 26871118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the approximations of mode-coupling theory for sheared steady states of colloids.
    Nandi SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042306. PubMed ID: 26565239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational and rotational dynamics of colloidal particles in suspension: effect of shear.
    Hernández-Contreras M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic equations governing Smoluchowski dynamics in equilibrium.
    Mazenko GF; McCowan DD; Spyridis P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051105. PubMed ID: 23004701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal glass transition: beyond mode-coupling theory.
    Szamel G
    Phys Rev Lett; 2003 Jun; 90(22):228301. PubMed ID: 12857344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized mode-coupling theory for mixtures of Brownian particles.
    Debets VE; Luo C; Ciarella S; Janssen LMC
    Phys Rev E; 2021 Dec; 104(6-2):065302. PubMed ID: 35030832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From equilibrium to steady-state dynamics after switch-on of shear.
    Krüger M; Weysser F; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061506. PubMed ID: 20866424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smoluchowski dynamics of the vnd/NK-2 homeodomain from Drosophila melanogaster: first-order mode-coupling approximation.
    La Penna G; Mormino M; Pioli F; Perico A; Fioravanti R; Gruschus JM; Ferretti JA
    Biopolymers; 1999 Mar; 49(3):235-54. PubMed ID: 9990841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical density functional theory for molecular and colloidal fluids: a microscopic approach to fluid mechanics.
    Archer AJ
    J Chem Phys; 2009 Jan; 130(1):014509. PubMed ID: 19140624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of a microscopic theory of barriers and activated hopping transport in glassy liquids and suspensions.
    Schweizer KS
    J Chem Phys; 2005 Dec; 123(24):244501. PubMed ID: 16396543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.