These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19391738)

  • 1. Annular shear of cohesionless granular materials: from the inertial to quasistatic regime.
    Koval G; Roux JN; Corfdir A; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021306. PubMed ID: 19391738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasistatic to inertial transition in granular materials and the role of fluctuations.
    Gaume J; Chambon G; Naaim M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051304. PubMed ID: 22181408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region.
    Shojaaee Z; Roux JN; Chevoir F; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011301. PubMed ID: 23005405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheophysics of dense granular materials: discrete simulation of plane shear flows.
    da Cruz F; Emam S; Prochnow M; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021309. PubMed ID: 16196558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear.
    Guo N; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042208. PubMed ID: 24827242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of granular flows in a rough annular shear cell.
    Jasti V; Higgs CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041306. PubMed ID: 18999417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuum modeling of secondary rheology in dense granular materials.
    Henann DL; Kamrin K
    Phys Rev Lett; 2014 Oct; 113(17):178001. PubMed ID: 25379938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheology of cohesive granular materials across multiple dense-flow regimes.
    Gu Y; Chialvo S; Sundaresan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032206. PubMed ID: 25314436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Merging fluid and solid granular behavior.
    Vescovi D; Luding S
    Soft Matter; 2016 Oct; 12(41):8616-8628. PubMed ID: 27722435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip velocity and velocity inversion in a cylindrical Couette flow.
    Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036312. PubMed ID: 19392054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling laws for the slip velocity in dense granular flows.
    Artoni R; Santomaso AC; Go' M; Canu P
    Phys Rev Lett; 2012 Jun; 108(23):238002. PubMed ID: 23003991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear with comminution of a granular material: microscopic deformations outside the shear band.
    Chambon G; Schmittbuhl J; Corfdir A; Vilotte JP; Roux S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011304. PubMed ID: 12935134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regime transitions of granular flow in a shear cell: a micromechanical study.
    Wang X; Zhu HP; Luding S; Yu AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032203. PubMed ID: 24125257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuum approach to wide shear zones in quasistatic granular matter.
    Depken M; van Saarloos W; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031302. PubMed ID: 16605512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the evolution of granular stress-strain and voidage states based on DEM simulations.
    Tüzün U; Baxter J; Heyes DM
    Philos Trans A Math Phys Eng Sci; 2004 Sep; 362(1822):1931-51. PubMed ID: 15306423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow of wet granular materials: A numerical study.
    Khamseh S; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022201. PubMed ID: 26382388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlocal rheology of dense granular flow in annular shear experiments.
    Tang Z; Brzinski TA; Shearer M; Daniels KE
    Soft Matter; 2018 Apr; 14(16):3040-3048. PubMed ID: 29637211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media.
    Antony SJ; Kruyt NP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031308. PubMed ID: 19391936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signatures of granular microstructure in dense shear flows.
    Mueth DM; Debregeas GF; Karczmar GS; Eng PJ; Nagel SR; Jaeger HM
    Nature; 2000 Jul; 406(6794):385-9. PubMed ID: 10935630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows.
    Faug T; Beguin R; Chanut B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021305. PubMed ID: 19792117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.