These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 19391780)
21. Global point dissipativity of neural networks with mixed time-varying delays. Cao J; Yuan K; Ho DW; Lam J Chaos; 2006 Mar; 16(1):013105. PubMed ID: 16599736 [TBL] [Abstract][Full Text] [Related]
22. Improved delay-dependent stability of neutral type neural networks with distributed delays. Liu PL ISA Trans; 2013 Nov; 52(6):717-24. PubMed ID: 23871149 [TBL] [Abstract][Full Text] [Related]
23. Cluster and group synchronization in delay-coupled networks. Dahms T; Lehnert J; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016202. PubMed ID: 23005502 [TBL] [Abstract][Full Text] [Related]
24. Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: phase diagram. Monasson R; Rosay S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062813. PubMed ID: 23848735 [TBL] [Abstract][Full Text] [Related]
25. Dynamical complexity in small-world networks of spiking neurons. Shanahan M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041924. PubMed ID: 18999472 [TBL] [Abstract][Full Text] [Related]
26. Context-dependent retrieval of information by neural-network dynamics with continuous attractors. Tsuboshita Y; Okamoto H Neural Netw; 2007 Aug; 20(6):705-13. PubMed ID: 17446042 [TBL] [Abstract][Full Text] [Related]
27. An analog implementation of biologically plausible neurons using CCII building blocks. Sharifipoor O; Ahmadi A Neural Netw; 2012 Dec; 36():129-35. PubMed ID: 23103972 [TBL] [Abstract][Full Text] [Related]
28. Attractivity analysis of memristor-based cellular neural networks with time-varying delays. Guo Z; Wang J; Yan Z IEEE Trans Neural Netw Learn Syst; 2014 Apr; 25(4):704-17. PubMed ID: 24807948 [TBL] [Abstract][Full Text] [Related]
29. Neutral stability, rate propagation, and critical branching in feedforward networks. Cayco-Gajic NA; Shea-Brown E Neural Comput; 2013 Jul; 25(7):1768-806. PubMed ID: 23607560 [TBL] [Abstract][Full Text] [Related]
30. Eigenvalue spectra of asymmetric random matrices for multicomponent neural networks. Wei Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066116. PubMed ID: 23005171 [TBL] [Abstract][Full Text] [Related]
31. Edge of chaos and prediction of computational performance for neural circuit models. Legenstein R; Maass W Neural Netw; 2007 Apr; 20(3):323-34. PubMed ID: 17517489 [TBL] [Abstract][Full Text] [Related]
32. A copulas approach to neuronal networks models. Sacerdote L; Sirovich R J Physiol Paris; 2010; 104(3-4):223-30. PubMed ID: 19941955 [TBL] [Abstract][Full Text] [Related]
33. Synchronization in large directed networks of coupled phase oscillators. Restrepo JG; Ott E; Hunt BR Chaos; 2006 Mar; 16(1):015107. PubMed ID: 16599773 [TBL] [Abstract][Full Text] [Related]
34. Communicability reveals a transition to coordinated behavior in multiplex networks. Estrada E; Gómez-Gardeñes J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042819. PubMed ID: 24827305 [TBL] [Abstract][Full Text] [Related]
35. Design of continuous attractor networks with monotonic tuning using a symmetry principle. Machens CK; Brody CD Neural Comput; 2008 Feb; 20(2):452-85. PubMed ID: 18047414 [TBL] [Abstract][Full Text] [Related]
36. Synchronization in uncertain complex networks. Chen M; Zhou D Chaos; 2006 Mar; 16(1):013101. PubMed ID: 16599732 [TBL] [Abstract][Full Text] [Related]
37. Delayed transiently chaotic neural networks and their application. Chen SS Chaos; 2009 Sep; 19(3):033125. PubMed ID: 19792005 [TBL] [Abstract][Full Text] [Related]
38. Delay-dependent global exponential robust stability for delayed cellular neural networks with time-varying delay. Liu PL ISA Trans; 2013 Nov; 52(6):711-6. PubMed ID: 23870320 [TBL] [Abstract][Full Text] [Related]
39. Global attractor alphabet of neural firing modes. Baram Y J Neurophysiol; 2013 Aug; 110(4):907-15. PubMed ID: 23678017 [TBL] [Abstract][Full Text] [Related]
40. The criticality hypothesis: how local cortical networks might optimize information processing. Beggs JM Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):329-43. PubMed ID: 17673410 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]