These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19391834)

  • 1. Comparison of Faxén's correction for a microsphere translating or rotating near a surface.
    Leach J; Mushfique H; Keen S; Di Leonardo R; Ruocco G; Cooper JM; Padgett MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026301. PubMed ID: 19391834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Faxen's Laws of a Composite Sphere under Creeping Flow Conditions.
    Chen SB; Ye X
    J Colloid Interface Sci; 2000 Jan; 221(1):50-57. PubMed ID: 10623451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics.
    Geonzon LC; Kobayashi M; Adachi Y
    Soft Matter; 2021 Sep; 17(34):7914-7920. PubMed ID: 34373877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic stereo microscopy for studying particle sedimentation.
    Lee MP; Gibson GM; Phillips D; Padgett MJ; Tassieri M
    Opt Express; 2014 Feb; 22(4):4671-7. PubMed ID: 24663785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of complex surfaces on biomicrorheological measurements using optical tweezers.
    Zhang S; Gibson LJ; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H
    Lab Chip; 2018 Jan; 18(2):315-322. PubMed ID: 29227492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From bead to rod: Comparison of theories by measuring translational drag coefficients of micron-sized magnetic bead-chains in Stokes flow.
    Yang K; Lu C; Zhao X; Kawamura R
    PLoS One; 2017; 12(11):e0188015. PubMed ID: 29145447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers.
    Schäffer E; Nørrelykke SF; Howard J
    Langmuir; 2007 Mar; 23(7):3654-65. PubMed ID: 17326669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion of a sphere through a polymer solution.
    Fan TH; Dhont JK; Tuinier R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011803. PubMed ID: 17358176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermophoretic Motion of a Sphere Parallel to an Insulated Plane.
    Chen SH
    J Colloid Interface Sci; 2000 Apr; 224(1):63-75. PubMed ID: 10708494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation and rotation of slightly deformed colloidal spheres experiencing slip.
    Chang YC; Keh HJ
    J Colloid Interface Sci; 2009 Feb; 330(1):201-10. PubMed ID: 19012900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurements of constrained brownian motion of an isolated sphere between two walls.
    Lin B; Yu J; Rice SA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3909-19. PubMed ID: 11088911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroviscous Forces on a Charged Cylinder Moving Near a Charged Wall.
    Warszyński P; van de Ven TG
    J Colloid Interface Sci; 2000 Mar; 223(1):1-15. PubMed ID: 10684664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameter exploration of optically trapped liquid aerosols.
    Burnham DR; Reece PJ; McGloin D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051123. PubMed ID: 21230453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drag force of a particle moving axisymmetrically in open or closed cavities.
    Chen SB
    J Chem Phys; 2011 Jul; 135(1):014904. PubMed ID: 21744918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realization of pitch-rotational torque wrench in two-beam optical tweezers.
    Lokesh M; Vaippully R; Bhallamudi VP; Prabhakar A; Roy B
    J Phys Commun; 2021 Nov; 5():115016. PubMed ID: 34869919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microrheological investigations in ionic liquids using optical trapping techniques.
    Dear RD; Worrall EK; Gault WD; Ritchie GA
    J Phys Chem B; 2013 Sep; 117(36):10567-71. PubMed ID: 24001322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic coupling and rotational mobilities near planar elastic membranes.
    Daddi-Moussa-Ider A; Lisicki M; Gekle S; Menzel AM; Löwen H
    J Chem Phys; 2018 Jul; 149(1):014901. PubMed ID: 29981533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical force characterization in manipulating live cells with optical tweezers.
    Wu Y; Sun D; Huang W
    J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design parameters for rotating cylindrical filtration.
    Schwille JA; Mitra D; Lueptow RM
    J Memb Sci; 2002 Jul; 204(1-2):53-65. PubMed ID: 12238523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.