These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19391861)

  • 1. Multicomponent cnoidal waves in cascade quasisynchronous frequency conversion.
    Petnikova VM; Shuvalov VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026605. PubMed ID: 19391861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric frequency conversion, nonlinear Schrödinger equation, and multicomponent cnoidal waves.
    Petnikova VM; Shuvalov VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046611. PubMed ID: 17995131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicomponent photorefractive cnoidal waves: stability, localization, and soliton asymptotics.
    Petnikova VM; Shuvalov VV; Vysloukh VA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):1009-18. PubMed ID: 11969847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability analysis of (1+1)-dimensional cnoidal waves in media with cubic nonlinearity.
    Kartashov YV; Aleshkevich VA; Vysloukh VA; Egorov AA; Zelenina AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036613. PubMed ID: 12689185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.
    El-Shamy EF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033105. PubMed ID: 25871222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.
    Cooper F; Khare A; Mihaila B; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036604. PubMed ID: 21230200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation.
    Hu XR; Lou SY; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056607. PubMed ID: 23004895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations.
    Zhu Y; Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036605. PubMed ID: 17500807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions.
    Kanna T; Sakkaravarthi K; Tamilselvan K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062921. PubMed ID: 24483545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piecewise linear emulator of the nonlinear Schrödinger equation and the resulting analytic solutions for Bose-Einstein condensates.
    Theodorakis S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066701. PubMed ID: 16241374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multisoliton complexes moving on a cnoidal wave background.
    Shin HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036628. PubMed ID: 15903626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier-mode dynamics for the nonlinear Schrödinger equation in one-dimensional bounded domains.
    Caputo JG; Efremidis NK; Hang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036601. PubMed ID: 22060516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stationary waves on nonlinear quantum graphs: General framework and canonical perturbation theory.
    Gnutzmann S; Waltner D
    Phys Rev E; 2016 Mar; 93(3):032204. PubMed ID: 27078341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between solitons and other nonlinear Schrödinger waves.
    Cheng XP; Lou SY; Chen CL; Tang XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043202. PubMed ID: 24827358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials.
    He JR; Li HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066607. PubMed ID: 21797507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations.
    Zhang J; Xu Z; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026709. PubMed ID: 18850975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rogue waves for a system of coupled derivative nonlinear Schrödinger equations.
    Chan HN; Malomed BA; Chow KW; Ding E
    Phys Rev E; 2016 Jan; 93(1):012217. PubMed ID: 26871083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulational instability in two-component discrete media with cubic-quintic nonlinearity.
    Baizakov BB; Bouketir A; Messikh A; Umarov BA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046605. PubMed ID: 19518369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.
    Petrović NZ; Belić M; Zhong WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026604. PubMed ID: 21405921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant excitation and nonlinear evolution of waves in the equatorial waveguide in the presence of the mean current.
    Reznik G; Zeitlin V
    Phys Rev Lett; 2007 Aug; 99(6):064501. PubMed ID: 17930833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.