These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19391875)

  • 1. Dynamical local field corrections on energy loss in plasmas of all degeneracies.
    Barriga-Carrasco MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):027401. PubMed ID: 19391875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic properties of the energy loss of multi-MeV charged particles traveling in two-component warm dense plasmas.
    Fu ZG; Wang Z; Li ML; Li DF; Kang W; Zhang P
    Phys Rev E; 2016 Dec; 94(6-1):063203. PubMed ID: 28085472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton stopping using a full conserving dielectric function in plasmas at any degeneracy.
    Barriga-Carrasco MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046403. PubMed ID: 21230401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of damping on proton energy loss in plasmas of all degeneracies.
    Barriga-Carrasco MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016405. PubMed ID: 17677577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local-field-correction effects on the electron response functions and on the electrical conductivity in a hydrogen plasma.
    Bennadji K; Gombert MM; Bendib A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016408. PubMed ID: 19257149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion energy-loss characteristics and friction in a free-electron gas at warm dense matter and nonideal dense plasma conditions.
    Moldabekov ZA; Dornheim T; Bonitz M; Ramazanov TS
    Phys Rev E; 2020 May; 101(5-1):053203. PubMed ID: 32575188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasmas.
    Fortmann C; Wierling A; Röpke G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026405. PubMed ID: 20365663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy ion charge-state distribution effects on energy loss in plasmas.
    Barriga-Carrasco MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043107. PubMed ID: 24229293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations and generalized Lenard-Balescu calculations of electron-ion temperature equilibration in plasmas.
    Benedict LX; Surh MP; Castor JI; Khairallah SA; Whitley HD; Richards DF; Glosli JN; Murillo MS; Scullard CR; Grabowski PE; Michta D; Graziani FR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046406. PubMed ID: 23214699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric function of dense plasmas, their stopping power, and sum rules.
    Arkhipov YV; Ashikbayeva AB; Askaruly A; Davletov AE; Tkachenko IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053102. PubMed ID: 25493892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orbital polarization in itinerant magnets.
    Solovyev IV
    Phys Rev Lett; 2005 Dec; 95(26):267205. PubMed ID: 16486395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitonic effects on the silicon plasmon resonance.
    Olevano V; Reining L
    Phys Rev Lett; 2001 Jun; 86(26 Pt 1):5962-5. PubMed ID: 11415404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects.
    Emfietzoglou D; Kyriakou I; Garcia-Molina R; Abril I; Nikjoo H
    Radiat Res; 2013 Nov; 180(5):499-513. PubMed ID: 24131062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water.
    Emfietzoglou D; Garcia-Molina R; Kyriakou I; Abril I; Nikjoo H
    Phys Med Biol; 2009 Jun; 54(11):3451-72. PubMed ID: 19436107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation of Mach cones and energy dissipation by charged particles moving over two-dimensional strongly coupled dusty plasmas.
    Jiang K; Hou LJ; Wang YN; Misković ZL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016404. PubMed ID: 16486285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response function including collisions for an interacting fermion gas.
    Röpke G; Redmer R; Wierling A; Reinholz H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):R2484-7. PubMed ID: 11970182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collisional ionization and recombination in degenerate plasmas beyond the free-electron-gas approximation.
    Williams GO; Fajardo M
    Phys Rev E; 2020 Dec; 102(6-1):063204. PubMed ID: 33466048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of fast charged projectiles with two-dimensional electron gas: Interaction and collisional-damping effects.
    Nersisyan HB; Das AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016402. PubMed ID: 19658818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing the random phase approximation into a practical post-Kohn-Sham correlation model.
    Furche F
    J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma.
    Reinholz H; Redmer R; Ropke G; Wierling A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5648-66. PubMed ID: 11089123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.