These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 19391897)
21. Quantum Algorithm for Variant Maximum Satisfiability. Alasow A; Jin P; Perkowski M Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359704 [TBL] [Abstract][Full Text] [Related]
22. Analytic and algorithmic solution of random satisfiability problems. Mézard M; Parisi G; Zecchina R Science; 2002 Aug; 297(5582):812-5. PubMed ID: 12089451 [TBL] [Abstract][Full Text] [Related]
23. Analog Approach to Constraint Satisfaction Enabled by Spin Orbit Torque Magnetic Tunnel Junctions. Wijesinghe P; Liyanagedera C; Roy K Sci Rep; 2018 May; 8(1):6940. PubMed ID: 29720596 [TBL] [Abstract][Full Text] [Related]
24. T-->0 mean-field population dynamics approach for the random 3-satisfiability problem. Zhou H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066102. PubMed ID: 18643331 [TBL] [Abstract][Full Text] [Related]
25. Random K-satisfiability problem: from an analytic solution to an efficient algorithm. Mézard M; Zecchina R Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056126. PubMed ID: 12513575 [TBL] [Abstract][Full Text] [Related]
26. Behavior of heuristics on large and hard satisfiability problems. Ardelius J; Aurell E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):037702. PubMed ID: 17025790 [TBL] [Abstract][Full Text] [Related]
27. Local search methods based on variable focusing for random K-satisfiability. Lemoy R; Alava M; Aurell E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013305. PubMed ID: 25679737 [TBL] [Abstract][Full Text] [Related]
28. Circumspect descent prevails in solving random constraint satisfaction problems. Alava M; Ardelius J; Aurell E; Kaski P; Krishnamurthy S; Orponen P; Seitz S Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15253-7. PubMed ID: 18832149 [TBL] [Abstract][Full Text] [Related]
29. Biased random satisfiability problems: from easy to hard instances. Ramezanpour A; Moghimi-Araghi S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066101. PubMed ID: 16089814 [TBL] [Abstract][Full Text] [Related]
30. Minimizing energy below the glass thresholds. Battaglia D; Kolár M; Zecchina R Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036107. PubMed ID: 15524587 [TBL] [Abstract][Full Text] [Related]
31. Algorithm for finding partitionings of hard variants of boolean satisfiability problem with application to inversion of some cryptographic functions. Semenov A; Zaikin O Springerplus; 2016; 5():554. PubMed ID: 27190753 [TBL] [Abstract][Full Text] [Related]
32. Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction. Wang X; Bao Z; Hu J; Wang S; Zhan A Biosystems; 2008 Jan; 91(1):117-25. PubMed ID: 17904730 [TBL] [Abstract][Full Text] [Related]
33. Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Weiss Y; Freeman WT Neural Comput; 2001 Oct; 13(10):2173-200. PubMed ID: 11570995 [TBL] [Abstract][Full Text] [Related]
34. Clause states based configuration checking in local search for satisfiability. Luo C; Cai S; Su K; Wu W IEEE Trans Cybern; 2015 May; 45(5):1014-27. PubMed ID: 25134096 [TBL] [Abstract][Full Text] [Related]
35. Simplest random K-satisfiability problem. Ricci-Tersenghi F; Weigt M; Zecchina R Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026702. PubMed ID: 11308607 [TBL] [Abstract][Full Text] [Related]
36. Simplifying random satisfiability problems by removing frustrating interactions. Ramezanpour A; Moghimi-Araghi S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041105. PubMed ID: 17155020 [TBL] [Abstract][Full Text] [Related]
37. CCCP algorithms to minimize the Bethe and Kikuchi free energies: convergent alternatives to belief propagation. Yuille AL Neural Comput; 2002 Jul; 14(7):1691-722. PubMed ID: 12079552 [TBL] [Abstract][Full Text] [Related]
38. A multilevel memetic algorithm for large SAT-encoded problems. Bouhmala N Evol Comput; 2012; 20(4):641-64. PubMed ID: 22540191 [TBL] [Abstract][Full Text] [Related]
39. Cluster expansions in dilute systems: applications to satisfiability problems and spin glasses. Semerjian G; Cugliandolo LF Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036115. PubMed ID: 11580402 [TBL] [Abstract][Full Text] [Related]