BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19391939)

  • 1. Persistent correlation of constrained colloidal motion.
    Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031402. PubMed ID: 19391939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic memory effects in confined colloidal diffusion.
    Jeney S; Lukić B; Kraus JA; Franosch T; Forró L
    Phys Rev Lett; 2008 Jun; 100(24):240604. PubMed ID: 18643565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion of a colloidal particle in an optical trap.
    Lukić B; Jeney S; Sviben Z; Kulik AJ; Florin EL; Forró L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011112. PubMed ID: 17677415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic description of the long-time tails of the linear and rotational velocity autocorrelation functions of a particle in a confined geometry.
    Frydel D; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061404. PubMed ID: 18233847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameter exploration of optically trapped liquid aerosols.
    Burnham DR; Reece PJ; McGloin D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051123. PubMed ID: 21230453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium.
    Grebenkov DS; Vahabi M; Bertseva E; Forró L; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):040701. PubMed ID: 24229100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An itinerant oscillator model with cage inertia for mesorheological granular experiments.
    Lasanta A; Puglisi A
    J Chem Phys; 2015 Aug; 143(6):064511. PubMed ID: 26277149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall.
    Vitoshkin H; Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev Fluids; 2016; 1():. PubMed ID: 27830213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic mobility of an optically trapped colloidal particle near fluid-fluid interfaces.
    Wang GM; Prabhakar R; Sevick EM
    Phys Rev Lett; 2009 Dec; 103(24):248303. PubMed ID: 20366238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian motion of finite-inertia particles in a simple shear flow.
    Drossinos Y; Reeks MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031113. PubMed ID: 15903412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution detection of Brownian motion for quantitative optical tweezers experiments.
    Grimm M; Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021912. PubMed ID: 23005790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Nov; 123(18):184903. PubMed ID: 16292935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion.
    Felderhof BU
    J Phys Chem B; 2005 Nov; 109(45):21406-12. PubMed ID: 16853777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous investigation of sedimentation and diffusion of a single colloidal particle near an interface.
    Oetama RJ; Walz JY
    J Chem Phys; 2006 Apr; 124(16):164713. PubMed ID: 16674163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-time behavior of the velocity autocorrelation function at low densities and near the critical point of simple fluids.
    Dib RF; Ould-Kaddour F; Levesque D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011202. PubMed ID: 16907082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical solution of the generalized Langevin equation with hydrodynamic interactions: subdiffusion of heavy tracers.
    Grebenkov DS; Vahabi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012130. PubMed ID: 24580195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales.
    Padding JT; Louis AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031402. PubMed ID: 17025630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function.
    Despósito MA; Viñales AD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021111. PubMed ID: 19792081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the viscoelastic moduli of complex fluids from observation of Brownian motion of a particle confined to a harmonic trap.
    Felderhof BU
    J Chem Phys; 2011 May; 134(20):204910. PubMed ID: 21639480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.