These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19391939)

  • 21. Power-law decay of the velocity autocorrelation function of a granular fluid in the homogeneous cooling state.
    Brey JJ; Ruiz-Montero MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012202. PubMed ID: 25679614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short-time motion of Brownian particles in a shear flow.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031401. PubMed ID: 19391938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropy of Brownian motion caused only by hydrodynamic interaction with a wall.
    Holmqvist P; Dhont JK; Lang PR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021402. PubMed ID: 17025420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Change in collective motion of colloidal particles driven by an optical vortex with driving force and spatial confinement.
    Saito K; Okubo S; Kimura Y
    Soft Matter; 2018 Jul; 14(29):6037-6042. PubMed ID: 29978882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable Brownian vortex at the interface.
    Khan M; Sood AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041408. PubMed ID: 21599159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Friction and diffusion of a Brownian particle in a mesoscopic solvent.
    Lee SH; Kapral R
    J Chem Phys; 2004 Dec; 121(22):11163-9. PubMed ID: 15634070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unsteady motion of a perfectly slipping sphere.
    Kabarowski JK; Khair AS
    Phys Rev E; 2020 May; 101(5-1):053102. PubMed ID: 32575193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Normal modes of weak colloidal gels.
    Varga Z; Swan JW
    Phys Rev E; 2018 Jan; 97(1-1):012608. PubMed ID: 29448322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Int J Micronano Scale Transp; 2012 Jun; 3(1-2):13-20. PubMed ID: 23950764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrodynamic correlations in three-particle colloidal systems in harmonic traps.
    Herrera-Velarde S; Euán-Díaz EC; Córdoba-Valdés F; Castañeda-Priego R
    J Phys Condens Matter; 2013 Aug; 25(32):325102. PubMed ID: 23838468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resolution of cross-type optical particle separation.
    Kim SB; Yoon SY; Sung HJ; Kim SS
    Anal Chem; 2008 Aug; 80(15):6023-8. PubMed ID: 18598054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffusion, sedimentation equilibrium, and harmonic trapping of run-and-tumble nanoswimmers.
    Wang Z; Chen HY; Sheng YJ; Tsao HK
    Soft Matter; 2014 May; 10(18):3209-17. PubMed ID: 24718999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Treating inertia in passive microbead rheology.
    Indei T; Schieber JD; Córdoba A; Pilyugina E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021504. PubMed ID: 22463216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 'Lissajous-like' trajectories in optical tweezers.
    Hay RF; Gibson GM; Simpson SH; Padgett MJ; Phillips DB
    Opt Express; 2015 Dec; 23(25):31716-27. PubMed ID: 26698964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous measurement of mass and rotation of trapped absorbing particles in air.
    Bera SK; Kumar A; Sil S; Saha TK; Saha T; Banerjee A
    Opt Lett; 2016 Sep; 41(18):4356-9. PubMed ID: 27628396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anomalous collective dynamics in optically driven colloidal rings.
    Roichman Y; Grier DG; Zaslavsky G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):020401. PubMed ID: 17358303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy.
    Hosokawa C; Yoshikawa H; Masuhara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021408. PubMed ID: 16196566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quantitative analysis of memory effects in the viscously coupled dynamics of optically trapped Brownian particles.
    Paul S; Kumar R; Banerjee A
    Soft Matter; 2019 Nov; 15(44):8976-8981. PubMed ID: 31681925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics.
    Chaudhri A; Lukes JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026707. PubMed ID: 20365675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.