BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19391954)

  • 1. Boundaries, kinetic properties, and final domain structure of plane discrete uniform Poisson-Voronoi tessellations with von Neumann neighborhoods.
    Korobov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031607. PubMed ID: 19391954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling properties of planar discrete Poisson-Voronoi tessellations with von Neumann neighborhoods constructed according to the nucleation and growth mechanism.
    Korobov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032405. PubMed ID: 24730850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of plane discrete Poisson-Voronoi tessellations on triangular tiling formed by the Kolmogorov-Johnson-Mehl-Avrami growth of triangular islands.
    Korobov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021602. PubMed ID: 21928994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling properties of the area distribution functions and kinetic curves of dense plane discrete Poisson-Voronoi tessellations.
    Korobov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):014401. PubMed ID: 23410473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voronoi Tessellations and the Shannon Entropy of the Pentagonal Tilings.
    Bormashenko E; Legchenkova I; Frenkel M; Shvalb N; Shoval S
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is cancer a pure growth curve or does it follow a kinetics of dynamical structural transformation?
    González MM; Joa JA; Cabrales LE; Pupo AE; Schneider B; Kondakci S; Ciria HM; Reyes JB; Jarque MV; Mateus MA; González TR; Brooks SC; Cáceres JL; González GV
    BMC Cancer; 2017 Mar; 17(1):174. PubMed ID: 28270135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal evolution of the domain structure in a Poisson-Voronoi nucleation and growth transformation: results for one and three dimensions.
    Pineda E; Crespo D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021110. PubMed ID: 18850789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell size distribution in random tessellations of space.
    Pineda E; Bruna P; Crespo D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066119. PubMed ID: 15697446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitting of random tessellation models to keratin filament networks.
    Beil M; Eckel S; Fleischer F; Schmidt H; Schmidt V; Walther P
    J Theor Biol; 2006 Jul; 241(1):62-72. PubMed ID: 16380137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-size distribution and scaling in a one-dimensional Kolmogorov-Johnson-Mehl-Avrami lattice model with continuous nucleation.
    Néda Z; Járai-Szabó F; Boda S
    Phys Rev E; 2017 Oct; 96(4-1):042145. PubMed ID: 29347594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An edge-weighted centroidal Voronoi tessellation model for image segmentation.
    Wang J; Ju L; Wang X
    IEEE Trans Image Process; 2009 Aug; 18(8):1844-58. PubMed ID: 19556200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model.
    Jun S; Zhang H; Bechhoefer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011908. PubMed ID: 15697631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method.
    Iwamatsu M
    J Chem Phys; 2008 Feb; 128(8):084504. PubMed ID: 18315058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistics of cross sections of Voronoi tessellations.
    Ferraro M; Zaninetti L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041107. PubMed ID: 22181087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization kinetics of lithium niobate glass: determination of the Johnson-Mehl-Avrami-Kolmogorov parameters.
    Choi HW; Kim YH; Rim YH; Yang YS
    Phys Chem Chem Phys; 2013 Jun; 15(24):9940-6. PubMed ID: 23677338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image segmentation using local variation and edge-weighted centroidal Voronoi tessellations.
    Wang J; Ju L; Wang X
    IEEE Trans Image Process; 2011 Nov; 20(11):3242-56. PubMed ID: 21550885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The von Neumann relation generalized to coarsening of three-dimensional microstructures.
    MacPherson RD; Srolovitz DJ
    Nature; 2007 Apr; 446(7139):1053-5. PubMed ID: 17460667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical review on applications of the Avrami equation beyond materials science.
    Shirzad K; Viney C
    J R Soc Interface; 2023 Jun; 20(203):20230242. PubMed ID: 37340781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized voronoi tessellation as a model of two-dimensional cell tissue dynamics.
    Bock M; Tyagi AK; Kreft JU; Alt W
    Bull Math Biol; 2010 Oct; 72(7):1696-731. PubMed ID: 20082148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voronoi and Voronoi-related tessellations in studies of protein structure and interaction.
    Poupon A
    Curr Opin Struct Biol; 2004 Apr; 14(2):233-41. PubMed ID: 15093839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.