These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19391957)

  • 1. Theory and computer simulation for the cubatic phase of cut spheres.
    Duncan PD; Dennison M; Masters AJ; Wilson MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031702. PubMed ID: 19391957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic stability of the cubatic phase of hard cut spheres evaluated by expanded ensemble simulations.
    Duncan PD; Masters AJ; Wilson MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011702. PubMed ID: 21867191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase behavior of hard colloidal platelets using free energy calculations.
    Marechal M; Cuetos A; Martínez-Haya B; Dijkstra M
    J Chem Phys; 2011 Mar; 134(9):094501. PubMed ID: 21384979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientational ordering in hard rectangles: The role of three-body correlations.
    Martínez-Ratón Y; Velasco E; Mederos L
    J Chem Phys; 2006 Jul; 125(1):014501. PubMed ID: 16863310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of scattering and phase behavior around the isotropic-nematic transition of discotic particles.
    Fartaria RP; Javid N; Sefcik J; Sweatman MB
    J Colloid Interface Sci; 2012 Jul; 377(1):94-104. PubMed ID: 22503662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional theory and simulation of the columnar phase of a system of parallel hard ellipsoids with attractive interactions.
    del Río EM; Galindo A; de Miguel E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051707. PubMed ID: 16383620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demixing and orientational ordering in mixtures of rectangular particles.
    de las Heras D; Martínez-Ratón Y; Velasco E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031704. PubMed ID: 17930260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase behavior of colloidal hard tetragonal parallelepipeds (cuboids): a Monte Carlo simulation study.
    John BS; Escobedo FA
    J Phys Chem B; 2005 Dec; 109(48):23008-15. PubMed ID: 16853998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation and high level virial theory of Saturn-ring or UFO colloids.
    Bates MA; Dennison M; Masters A
    J Chem Phys; 2008 Aug; 129(7):074901. PubMed ID: 19044798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase behavior of parallel hard cylinders.
    Capitán JA; Martínez-Ratón Y; Cuesta JA
    J Chem Phys; 2008 May; 128(19):194901. PubMed ID: 18500895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation study of a mesogenic lattice model based on long-range dispersion interactions.
    Romano S
    Phys Rev E; 2016 Oct; 94(4-1):042702. PubMed ID: 27841513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesophase formation in a system of top-shaped hard molecules: density functional theory and Monte Carlo simulation.
    de las Heras D; Varga S; Vesely FJ
    J Chem Phys; 2011 Jun; 134(21):214902. PubMed ID: 21663376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking three-phase coexistences in binary mixtures of hard plates and spheres.
    Aliabadi R; Moradi M; Varga S
    J Chem Phys; 2016 Feb; 144(7):074902. PubMed ID: 26896997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The isotropic-nematic and nematic-nematic phase transition of binary mixtures of tangent hard-sphere chain fluids: an analytical equation of state.
    van Westen T; Vlugt TJ; Gross J
    J Chem Phys; 2014 Jan; 140(3):034504. PubMed ID: 25669397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymptotic behavior of the isotropic-nematic and nematic-columnar phase boundaries for the system of hard rectangles on a square lattice.
    Kundu J; Rajesh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012105. PubMed ID: 25679568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Parsons-Lee and Onsager theories to predict nematic and demixing behavior in binary mixtures of hard rods and hard spheres.
    Cuetos A; Martínez-Haya B; Lago S; Rull LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061701. PubMed ID: 17677277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotropic-nematic phase equilibria of hard-sphere chain fluids-Pure components and binary mixtures.
    Oyarzún B; van Westen T; Vlugt TJ
    J Chem Phys; 2015 Feb; 142(6):064903. PubMed ID: 25681939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cubatic liquid-crystalline behavior in a system of hard cuboids.
    John BS; Stroock A; Escobedo FA
    J Chem Phys; 2004 May; 120(19):9383-9. PubMed ID: 15267877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental measure theory for smectic phases: scaling behavior and higher order terms.
    Wittmann R; Marechal M; Mecke K
    J Chem Phys; 2014 Aug; 141(6):064103. PubMed ID: 25134547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation study of a simple cubatic mesogenic lattice model.
    Romano S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011704. PubMed ID: 16907108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.